{"title":"Equinox Transitions of Thermosphere O/N2 and Meridional Circulation in the Northern Hemisphere as Observed by NASA's GOLD and ICON Missions","authors":"Q. Gan, L. Qian, N. M. Pedatella, R. W. Eastes","doi":"10.1029/2024gl111810","DOIUrl":null,"url":null,"abstract":"Leveraging the unique perspective enabled by Global-scale Observations of the Limb and Disk, we examined the characteristics of equinox transitions in the thermospheric column integrated ratio of atomic oxygen to molecular nitrogen (O/N<sub>2</sub>) in the Northern Hemisphere. We found that the timing of the O/N<sub>2</sub> equinox transition from winter to summer or vice versa exhibits a progression with latitude, particularly, near spring equinox. The O/N<sub>2</sub> equinox transition is far slower during spring compared to fall, leading to a remarkable seasonal asymmetry. Ionospheric Connection Explorer observed a prominent asymmetry in the summer-to-winter circulation in the middle to upper thermosphere, implying that the inter-hemispheric circulation plays a crucial role in the O/N<sub>2</sub> equinox transition. Additionally, since the wave-driven meridional circulation in the lower thermosphere displays a seasonal asymmetry between the northward-to-southward and southward-to-northward transitions, we would anticipate that the O/N<sub>2</sub> equinox transition is also influenced by the lower atmospheric forcing.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"7 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl111810","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Leveraging the unique perspective enabled by Global-scale Observations of the Limb and Disk, we examined the characteristics of equinox transitions in the thermospheric column integrated ratio of atomic oxygen to molecular nitrogen (O/N2) in the Northern Hemisphere. We found that the timing of the O/N2 equinox transition from winter to summer or vice versa exhibits a progression with latitude, particularly, near spring equinox. The O/N2 equinox transition is far slower during spring compared to fall, leading to a remarkable seasonal asymmetry. Ionospheric Connection Explorer observed a prominent asymmetry in the summer-to-winter circulation in the middle to upper thermosphere, implying that the inter-hemispheric circulation plays a crucial role in the O/N2 equinox transition. Additionally, since the wave-driven meridional circulation in the lower thermosphere displays a seasonal asymmetry between the northward-to-southward and southward-to-northward transitions, we would anticipate that the O/N2 equinox transition is also influenced by the lower atmospheric forcing.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.