Orientation Piezometry: Methods for Quantifying Stress From the Compositions and Orientations of Multicomponent Minerals

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Benjamin L. Hess, Jay J. Ague
{"title":"Orientation Piezometry: Methods for Quantifying Stress From the Compositions and Orientations of Multicomponent Minerals","authors":"Benjamin L. Hess, Jay J. Ague","doi":"10.1029/2024jb030113","DOIUrl":null,"url":null,"abstract":"Mineral chemistry records the pressure and temperature conditions of lithospheric processes. Active tectonic margins, however, are subjected to non-hydrostatic stresses wherein stress magnitudes vary directionally, and the impact of non-hydrostatic stress on mineral chemistry is uncertain. The work of materials scientists F. Larché and J. Cahn provides a framework for quantifying how stress affects mineral chemistry. Crystallographically and mechanically anisotropic, multicomponent minerals will have different compositions as a function of their orientation under a fixed stress meaning that grain-to-grain compositional variation can be used to estimate stress. We develop two “orientation piezometry” methods that use the chemistry and orientations of multicomponent, anisotropic minerals to estimate stress. The first method uses chemistry and orientation (“coupled orientation piezometry”) whereas the second method uses composition alone (“decoupled orientation piezometry”). We apply the methods to clinopyroxene and feldspar solid solutions using synthetic data sets. The first method determines the full stress tensor whereas the second method can only determine the differential stress magnitude unless additional a priori information is specified. Plausible scenarios for orientation piezometry include minerals undergoing diffusion creep, recrystallized grains formed during dislocation creep, and minerals grown statically under stress. Preliminary application of the decoupled piezometer to the famous eclogite facies shear zones on Holsnøy, Norway, suggests differential stresses in the range of 300–900 MPa, broadly consistent with previous estimates from the area. Thus, orientation piezometry techniques may provide valuable constraints on geodynamic processes and insights into long-standing geological problems such as the relationship between pressure and depth.","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"23 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024jb030113","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Mineral chemistry records the pressure and temperature conditions of lithospheric processes. Active tectonic margins, however, are subjected to non-hydrostatic stresses wherein stress magnitudes vary directionally, and the impact of non-hydrostatic stress on mineral chemistry is uncertain. The work of materials scientists F. Larché and J. Cahn provides a framework for quantifying how stress affects mineral chemistry. Crystallographically and mechanically anisotropic, multicomponent minerals will have different compositions as a function of their orientation under a fixed stress meaning that grain-to-grain compositional variation can be used to estimate stress. We develop two “orientation piezometry” methods that use the chemistry and orientations of multicomponent, anisotropic minerals to estimate stress. The first method uses chemistry and orientation (“coupled orientation piezometry”) whereas the second method uses composition alone (“decoupled orientation piezometry”). We apply the methods to clinopyroxene and feldspar solid solutions using synthetic data sets. The first method determines the full stress tensor whereas the second method can only determine the differential stress magnitude unless additional a priori information is specified. Plausible scenarios for orientation piezometry include minerals undergoing diffusion creep, recrystallized grains formed during dislocation creep, and minerals grown statically under stress. Preliminary application of the decoupled piezometer to the famous eclogite facies shear zones on Holsnøy, Norway, suggests differential stresses in the range of 300–900 MPa, broadly consistent with previous estimates from the area. Thus, orientation piezometry techniques may provide valuable constraints on geodynamic processes and insights into long-standing geological problems such as the relationship between pressure and depth.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Solid Earth
Journal of Geophysical Research: Solid Earth Earth and Planetary Sciences-Geophysics
CiteScore
7.50
自引率
15.40%
发文量
559
期刊介绍: The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology. JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields. JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信