Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells

IF 7.5 1区 生物学 Q1 CELL BIOLOGY
Azad Alizada, Gregory J. Hannon, Benjamin Czech Nicholson
{"title":"Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells","authors":"Azad Alizada, Gregory J. Hannon, Benjamin Czech Nicholson","doi":"10.1101/gad.352120.124","DOIUrl":null,"url":null,"abstract":"The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using <em>Drosophila</em> as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells. Ectopic expression of Ovo in ovarian somatic cells activates germline piRNA pathway components, including the ping-pong factors Aubergine, Argonaute-3, and Vasa, leading to assembly of perinuclear cellular structures resembling nuage bodies of germ cells. We found that in ovarian somatic cells, transcription of <em>ovo</em> is repressed by <em>l(3)mbt</em>, thus preventing expression of germline piRNA pathway genes in the soma. Cross-species ChIP-seq and motif analyses demonstrate that Ovo is binding to genomic CCGTTA motifs within the promoters of germline piRNA pathway genes, suggesting a regulation by Ovo in ovaries analogous to that of A-MYB in testes. Our results also show consistent engagement of the Ovo transcription factor family at ovarian piRNA clusters across metazoan species, reflecting a deep evolutionary conservation of this regulatory paradigm from insects to humans.","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":"147 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gad.352120.124","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using Drosophila as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells. Ectopic expression of Ovo in ovarian somatic cells activates germline piRNA pathway components, including the ping-pong factors Aubergine, Argonaute-3, and Vasa, leading to assembly of perinuclear cellular structures resembling nuage bodies of germ cells. We found that in ovarian somatic cells, transcription of ovo is repressed by l(3)mbt, thus preventing expression of germline piRNA pathway genes in the soma. Cross-species ChIP-seq and motif analyses demonstrate that Ovo is binding to genomic CCGTTA motifs within the promoters of germline piRNA pathway genes, suggesting a regulation by Ovo in ovaries analogous to that of A-MYB in testes. Our results also show consistent engagement of the Ovo transcription factor family at ovarian piRNA clusters across metazoan species, reflecting a deep evolutionary conservation of this regulatory paradigm from insects to humans.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes & development
Genes & development 生物-发育生物学
CiteScore
17.50
自引率
1.90%
发文量
71
审稿时长
3-6 weeks
期刊介绍: Genes & Development is a research journal published in association with The Genetics Society. It publishes high-quality research papers in the areas of molecular biology, molecular genetics, and related fields. The journal features various research formats including Research papers, short Research Communications, and Resource/Methodology papers. Genes & Development has gained recognition and is considered as one of the Top Five Research Journals in the field of Molecular Biology and Genetics. It has an impressive Impact Factor of 12.89. The journal is ranked #2 among Developmental Biology research journals, #5 in Genetics and Heredity, and is among the Top 20 in Cell Biology (according to ISI Journal Citation Reports®, 2021).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信