{"title":"Optimal Cell Length for Exploration and Exploitation in Chemotactic Planktonic Bacteria","authors":"Òscar Guadayol, Rudi Schuech, Stuart Humphries","doi":"10.1111/1462-2920.70021","DOIUrl":null,"url":null,"abstract":"<p>Elongated morphologies are prevalent among motile bacterioplankton in aquatic systems. This is often attributed to enhanced chemotactic ability, but how long is best? We hypothesized the existence of an optimal cell length for efficient chemotaxis resulting from shape-imposed physical constraints acting on the trade-off between rapid exploration versus efficient exploitation of nutrient sources. To test this hypothesis, we evaluated the chemotactic performance of elongated cephalexin-treated Escherichia coli towards α-methyl-aspartate in a microfluidic device creating linear, stable and quiescent chemical gradients. Our experiments showed cells of intermediate length aggregating most tightly to the chemoattractant source. A sensitivity analysis of an Individual-Based-Model replicating these results showed that 1) cells of intermediate length are optimal at transient states, whereas at steady state longest cells are best, 2) poor chemotactic performance of very short cells is caused by directionality loss, and 3) long cells are penalized by brief, slow runs. Finally, we evaluated chemotactic performance of cells of different length with simulations of a phycosphere, and found that long cells swimming in a run-and-reverse pattern with extended runs and moderate speeds are most efficient in this microenvironment. Overall, our results suggest that the stability of the chemical landscape plays a role in cell-size selection.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 12","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70021","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Elongated morphologies are prevalent among motile bacterioplankton in aquatic systems. This is often attributed to enhanced chemotactic ability, but how long is best? We hypothesized the existence of an optimal cell length for efficient chemotaxis resulting from shape-imposed physical constraints acting on the trade-off between rapid exploration versus efficient exploitation of nutrient sources. To test this hypothesis, we evaluated the chemotactic performance of elongated cephalexin-treated Escherichia coli towards α-methyl-aspartate in a microfluidic device creating linear, stable and quiescent chemical gradients. Our experiments showed cells of intermediate length aggregating most tightly to the chemoattractant source. A sensitivity analysis of an Individual-Based-Model replicating these results showed that 1) cells of intermediate length are optimal at transient states, whereas at steady state longest cells are best, 2) poor chemotactic performance of very short cells is caused by directionality loss, and 3) long cells are penalized by brief, slow runs. Finally, we evaluated chemotactic performance of cells of different length with simulations of a phycosphere, and found that long cells swimming in a run-and-reverse pattern with extended runs and moderate speeds are most efficient in this microenvironment. Overall, our results suggest that the stability of the chemical landscape plays a role in cell-size selection.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens