AI model using CT-based imaging biomarkers to predict hepatocellular carcinoma in patients with chronic hepatitis B

IF 26.8 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Hyunjae Shin, Moon Haeng Hur, Byeong Geun Song, Soo Young Park, Gi-Ae Kim, Gwang Hyun Choi, Joon Yeul Nam, Minseok Albert Kim, Youngsu Park, Yunmi Ko, Jeayeon Park, Han Ah Lee, Sung Won Chung, Na Ryung Choi, Min Kyung Park, Yun Bin Lee, Dong Hyun Sinn, Seung Up Kim, Hwi Young Kim, Jong-Min Kim, Jeong-Hoon Lee
{"title":"AI model using CT-based imaging biomarkers to predict hepatocellular carcinoma in patients with chronic hepatitis B","authors":"Hyunjae Shin, Moon Haeng Hur, Byeong Geun Song, Soo Young Park, Gi-Ae Kim, Gwang Hyun Choi, Joon Yeul Nam, Minseok Albert Kim, Youngsu Park, Yunmi Ko, Jeayeon Park, Han Ah Lee, Sung Won Chung, Na Ryung Choi, Min Kyung Park, Yun Bin Lee, Dong Hyun Sinn, Seung Up Kim, Hwi Young Kim, Jong-Min Kim, Jeong-Hoon Lee","doi":"10.1016/j.jhep.2024.12.029","DOIUrl":null,"url":null,"abstract":"<h3>Background &amp; aims</h3>Various hepatocellular carcinoma (HCC) prediction models have been proposed for patients with chronic hepatitis B (CHB) using clinical variables. We aimed to develop an artificial intelligence (AI)-based HCC prediction model by incorporating imaging biomarkers derived from abdominal computed tomography (CT) images along with clinical variables.<h3>Methods</h3>An AI prediction model employing a gradient-boosting machine algorithm was developed utilizing imaging biomarkers extracted by DeepFore, a deep learning-based CT auto-segmentation software. The derivation cohort (n=5,585) was randomly divided into the training and internal validation sets at a 3:1 ratio. The external validation cohort included 2,883 patients. Six imaging biomarkers (i.e., abdominal visceral fat–total fat volume ratio, total fat–trunk volume ratio, spleen, and liver volume; liver–spleen Hounsfield unit [HU] ratio; and muscle HU) and eight clinical variables were selected as the main variables of our model, PLAN-B-DF.<h3>Results</h3>In the internal validation set (median follow-up duration=7.4 years), PLAN-B-DF demonstrated an excellent predictive performance with a c-index of 0.91 and good calibration function (<em>P</em>=0.78 by the Hosmer-Lemeshow test). In the external validation cohort (median follow-up duration=4.6 years), PLAN-B-DF showed a significantly better discrimination function compared to previous models including PLAN-B, PAGE-B, modified PAGE-B, and CU-HCC (c-index, 0.89 vs. 0.65—0.78; all <em>P</em>&lt;0.001) and maintained a good calibration function (<em>P</em>=0.42 by the Hosmer-Lemeshow test). When patients were classified into four groups according to the risk probability calculated by PLAN-B-DF, the 10-year cumulative HCC incidence was 0.0%, 0.4%, 16.0%, and 46.2% in the minimal-, low-, intermediate-, and high-risk groups, respectively.<h3>Conclusion</h3>This AI prediction model, integrating deep learning-based auto-segmentation of CT images, offers improved performance in predicting HCC risk among patients with CHB compared to previous models.<h3>Impact and implications</h3>The AI-driven HCC prediction model (PLAN-B-DF), employing an automated CT segmentation algorithm, demonstrates a significant improvement in predictive accuracy and risk stratification among patients with CHB. Using a gradient-boosting algorithm and CT metrics such as visceral fat volume and myosteatosis, PLAN-B-DF outperforms previous models based solely on clinical and demographic data. This model not only shows a higher c-index compared to previous models, but also effectively classifies CHB patients into different risk groups. This model uses machine learning to analyze the complex relationships among various risk factors contributing to HCC occurrence, thereby offering more personalized surveillance for CHB patients.","PeriodicalId":15888,"journal":{"name":"Journal of Hepatology","volume":"64 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hepatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jhep.2024.12.029","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background & aims

Various hepatocellular carcinoma (HCC) prediction models have been proposed for patients with chronic hepatitis B (CHB) using clinical variables. We aimed to develop an artificial intelligence (AI)-based HCC prediction model by incorporating imaging biomarkers derived from abdominal computed tomography (CT) images along with clinical variables.

Methods

An AI prediction model employing a gradient-boosting machine algorithm was developed utilizing imaging biomarkers extracted by DeepFore, a deep learning-based CT auto-segmentation software. The derivation cohort (n=5,585) was randomly divided into the training and internal validation sets at a 3:1 ratio. The external validation cohort included 2,883 patients. Six imaging biomarkers (i.e., abdominal visceral fat–total fat volume ratio, total fat–trunk volume ratio, spleen, and liver volume; liver–spleen Hounsfield unit [HU] ratio; and muscle HU) and eight clinical variables were selected as the main variables of our model, PLAN-B-DF.

Results

In the internal validation set (median follow-up duration=7.4 years), PLAN-B-DF demonstrated an excellent predictive performance with a c-index of 0.91 and good calibration function (P=0.78 by the Hosmer-Lemeshow test). In the external validation cohort (median follow-up duration=4.6 years), PLAN-B-DF showed a significantly better discrimination function compared to previous models including PLAN-B, PAGE-B, modified PAGE-B, and CU-HCC (c-index, 0.89 vs. 0.65—0.78; all P<0.001) and maintained a good calibration function (P=0.42 by the Hosmer-Lemeshow test). When patients were classified into four groups according to the risk probability calculated by PLAN-B-DF, the 10-year cumulative HCC incidence was 0.0%, 0.4%, 16.0%, and 46.2% in the minimal-, low-, intermediate-, and high-risk groups, respectively.

Conclusion

This AI prediction model, integrating deep learning-based auto-segmentation of CT images, offers improved performance in predicting HCC risk among patients with CHB compared to previous models.

Impact and implications

The AI-driven HCC prediction model (PLAN-B-DF), employing an automated CT segmentation algorithm, demonstrates a significant improvement in predictive accuracy and risk stratification among patients with CHB. Using a gradient-boosting algorithm and CT metrics such as visceral fat volume and myosteatosis, PLAN-B-DF outperforms previous models based solely on clinical and demographic data. This model not only shows a higher c-index compared to previous models, but also effectively classifies CHB patients into different risk groups. This model uses machine learning to analyze the complex relationships among various risk factors contributing to HCC occurrence, thereby offering more personalized surveillance for CHB patients.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hepatology
Journal of Hepatology 医学-胃肠肝病学
CiteScore
46.10
自引率
4.30%
发文量
2325
审稿时长
30 days
期刊介绍: The Journal of Hepatology is the official publication of the European Association for the Study of the Liver (EASL). It is dedicated to presenting clinical and basic research in the field of hepatology through original papers, reviews, case reports, and letters to the Editor. The Journal is published in English and may consider supplements that pass an editorial review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信