HfO2 Memristor-Based Flexible Radio Frequency Switches

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-20 DOI:10.1021/acsnano.4c11846
Shih-Chieh Chen, Yu-Tao Yang, Yun-Chien Tseng, Kun-Dong Chiou, Po-Wei Huang, Jia-Hao Chih, Hsien-Yang Liu, Tsung-Te Chou, Yang-Yu Jhang, Chien-Wei Chen, Chun-Hsiao Kuan, E Ming Ho, Chao-Hsin Chien, Chien-Nan Kuo, Yu-Ting Cheng, Der-Hsien Lien
{"title":"HfO2 Memristor-Based Flexible Radio Frequency Switches","authors":"Shih-Chieh Chen, Yu-Tao Yang, Yun-Chien Tseng, Kun-Dong Chiou, Po-Wei Huang, Jia-Hao Chih, Hsien-Yang Liu, Tsung-Te Chou, Yang-Yu Jhang, Chien-Wei Chen, Chun-Hsiao Kuan, E Ming Ho, Chao-Hsin Chien, Chien-Nan Kuo, Yu-Ting Cheng, Der-Hsien Lien","doi":"10.1021/acsnano.4c11846","DOIUrl":null,"url":null,"abstract":"Flexible and wearable electronics are experiencing rapid growth due to the increasing demand for multifunctional, lightweight, and portable devices. However, the growing demands of interactive applications driven by the rise of AI reveal the inadequate connectivity of current connection technologies. In this work, we successfully leverage memristive technology to develop a flexible radio frequency (RF) switch, optimized for 6G-compatible communication systems and adaptable to flexible applications. The flexible RF switch demonstrates a low insertion loss (2 dB) and a cutoff frequency exceeding 840 GHz, and performance metrics are maintained after 10<sup>6</sup> switching cycles and 2500 mechanical bending cycles, showing excellent reliability and robustness. Furthermore, the RF switch is fully integrable with a photolithography-processable polyimide (PSPI) substrate, enabling efficient 2.5D integration with other RF components, such as RF antennas and interconnects. This technology holds significant promise to advance 6G communications in flexible electronics, offering a scalable solution for high-speed data transmission in next-generation wearable devices.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"52 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11846","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible and wearable electronics are experiencing rapid growth due to the increasing demand for multifunctional, lightweight, and portable devices. However, the growing demands of interactive applications driven by the rise of AI reveal the inadequate connectivity of current connection technologies. In this work, we successfully leverage memristive technology to develop a flexible radio frequency (RF) switch, optimized for 6G-compatible communication systems and adaptable to flexible applications. The flexible RF switch demonstrates a low insertion loss (2 dB) and a cutoff frequency exceeding 840 GHz, and performance metrics are maintained after 106 switching cycles and 2500 mechanical bending cycles, showing excellent reliability and robustness. Furthermore, the RF switch is fully integrable with a photolithography-processable polyimide (PSPI) substrate, enabling efficient 2.5D integration with other RF components, such as RF antennas and interconnects. This technology holds significant promise to advance 6G communications in flexible electronics, offering a scalable solution for high-speed data transmission in next-generation wearable devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信