Haijuan Zhang, Xilin Piao, Xiangyue Zhang, Haotian Chi
{"title":"Elucidating High-Efficiency Guidance Design and Performance Optimization of Pt-Based Catalysts for Propane Dehydrogenation","authors":"Haijuan Zhang, Xilin Piao, Xiangyue Zhang, Haotian Chi","doi":"10.1021/acs.iecr.4c03760","DOIUrl":null,"url":null,"abstract":"Maintaining high dispersion of Pt in catalysts remains a significant challenge due to Pt migration and aggregation. Addressing this gap is critical for advancing the design of catalysts with enhanced performance and stability, particularly in applications requiring strong metal–support interactions. Here, we introduce a novel catalyst preparation method that employs an ethylenediaminetetraacetic acid disodium salt (EDTA) as a directing agent to stabilize Pt on an Al<sub>2</sub>O<sub>3</sub> support promoted by Sn. Leveraging the ability of EDTA to selectively bind Pt and Sn, we synthesized a highly dispersed Pt–Sn–Al<sub>2</sub>O<sub>3</sub> dehydrogenation catalyst. First-principles calculations based on density functional theory confirmed that the carbonyl and hydroxyl oxygen atoms in EDTA preferentially bond with Sn in the Al<sub>2</sub>O<sub>3</sub> support, facilitating precise Pt anchoring. Experimental results further validated these findings, showing that EDTA-guided synthesis enhanced the formation of Pt–Sn–Al<sub>2</sub>O<sub>3</sub> active sites and led to stronger metal–support interactions, resulting in uniform Pt particle distribution and improved catalyst stability. This approach not only increased propylene selectivity from about 85% to 93% but also significantly reduced methane byproduct formation. These findings demonstrate that the introduction of EDTA as a directing agent can effectively address Pt aggregation issues, offering a promising strategy for designing more efficient and stable catalysts for industrial dehydrogenation processes.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"25 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c03760","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Maintaining high dispersion of Pt in catalysts remains a significant challenge due to Pt migration and aggregation. Addressing this gap is critical for advancing the design of catalysts with enhanced performance and stability, particularly in applications requiring strong metal–support interactions. Here, we introduce a novel catalyst preparation method that employs an ethylenediaminetetraacetic acid disodium salt (EDTA) as a directing agent to stabilize Pt on an Al2O3 support promoted by Sn. Leveraging the ability of EDTA to selectively bind Pt and Sn, we synthesized a highly dispersed Pt–Sn–Al2O3 dehydrogenation catalyst. First-principles calculations based on density functional theory confirmed that the carbonyl and hydroxyl oxygen atoms in EDTA preferentially bond with Sn in the Al2O3 support, facilitating precise Pt anchoring. Experimental results further validated these findings, showing that EDTA-guided synthesis enhanced the formation of Pt–Sn–Al2O3 active sites and led to stronger metal–support interactions, resulting in uniform Pt particle distribution and improved catalyst stability. This approach not only increased propylene selectivity from about 85% to 93% but also significantly reduced methane byproduct formation. These findings demonstrate that the introduction of EDTA as a directing agent can effectively address Pt aggregation issues, offering a promising strategy for designing more efficient and stable catalysts for industrial dehydrogenation processes.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.