{"title":"Chaotic advection and mass transfer of viscous liquid–liquid flows in a novel 3D serpentine microchannel","authors":"Jiecai Long, Congkai Xie, Haojun Zhang, Xuan Zhang, Jingsong Yao, Rongguang Zhang, Xun Chen, Xin Chen","doi":"10.1002/aic.18701","DOIUrl":null,"url":null,"abstract":"This article aimed to study the characteristics of chaotic advection and mass transfer of viscous liquid–liquid flows in a novel 3D serpentine microchannel (TSM) with hybrid structures. The TSM and its corresponding experimental setup are established, and the CFD model is verified through flow field visualization experiments. Results reveal that efficient chaotic convection in TSM is achieved through continuous irregular spatial fluid deformation. The Lyapunov exponents greater than zero indicate the existence of chaotic behavior, and the maximum lineal stretch rate <i>λ</i><sub>M</sub> increases linearly with the characteristic Reynolds number. The mass transfer characteristics are evaluated by diffusion mass transfer number Φ and mass transfer field synergy number <i>Fc</i> quantitatively. The mixing index MI shows an increasing trend as <i>Fc</i> increases, while the mixing effectiveness ME decreases as the outlet Reynolds number Re<sub>O</sub> decreases. The relationships of MI with <i>λ</i><sub>M</sub> and <i>Fc</i> and the relationship of ME with Re<sub>O</sub> are established.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"261 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18701","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article aimed to study the characteristics of chaotic advection and mass transfer of viscous liquid–liquid flows in a novel 3D serpentine microchannel (TSM) with hybrid structures. The TSM and its corresponding experimental setup are established, and the CFD model is verified through flow field visualization experiments. Results reveal that efficient chaotic convection in TSM is achieved through continuous irregular spatial fluid deformation. The Lyapunov exponents greater than zero indicate the existence of chaotic behavior, and the maximum lineal stretch rate λM increases linearly with the characteristic Reynolds number. The mass transfer characteristics are evaluated by diffusion mass transfer number Φ and mass transfer field synergy number Fc quantitatively. The mixing index MI shows an increasing trend as Fc increases, while the mixing effectiveness ME decreases as the outlet Reynolds number ReO decreases. The relationships of MI with λM and Fc and the relationship of ME with ReO are established.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.