Observation of microscopic confinement dynamics by a tunable topological θ-angle

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Wei-Yong Zhang, Ying Liu, Yanting Cheng, Ming-Gen He, Han-Yi Wang, Tian-Yi Wang, Zi-Hang Zhu, Guo-Xian Su, Zhao-Yu Zhou, Yong-Guang Zheng, Hui Sun, Bing Yang, Philipp Hauke, Wei Zheng, Jad C. Halimeh, Zhen-Sheng Yuan, Jian-Wei Pan
{"title":"Observation of microscopic confinement dynamics by a tunable topological θ-angle","authors":"Wei-Yong Zhang, Ying Liu, Yanting Cheng, Ming-Gen He, Han-Yi Wang, Tian-Yi Wang, Zi-Hang Zhu, Guo-Xian Su, Zhao-Yu Zhou, Yong-Guang Zheng, Hui Sun, Bing Yang, Philipp Hauke, Wei Zheng, Jad C. Halimeh, Zhen-Sheng Yuan, Jian-Wei Pan","doi":"10.1038/s41567-024-02702-x","DOIUrl":null,"url":null,"abstract":"The topological θ-angle is central to several gauge theories in condensed-matter and high-energy physics. For example, it is responsible for the strong CP problem in quantum chromodynamics and can emerge in effective theories of electrodynamics in topological insulators. Although analogue quantum simulators potentially offer a venue for realizing and controlling the θ-angle, doing so has hitherto remained an outstanding challenge. Here, we describe the experimental realization of a tunable topological θ-angle in a Bose–Hubbard gauge-theory quantum simulator, which was implemented through a tilted superlattice potential that induces an effective background electric field. We demonstrate the emerging physics through the direct observation of the confinement–deconfinement transition of (1 + 1)-dimensional quantum electrodynamics. Using an atomic-precision quantum gas microscope, we distinguish between the confined and deconfined phases by monitoring the real-time evolution of particle–antiparticle pairs. Our work provides a step forward in the realization of topological terms on modern quantum simulators. Topological terms arise naturally in gauge theories but have been difficult to implement in quantum simulators. Now, a tunable topological θ-angle is demonstrated with a cold-atom platform.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 1","pages":"155-160"},"PeriodicalIF":17.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02702-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The topological θ-angle is central to several gauge theories in condensed-matter and high-energy physics. For example, it is responsible for the strong CP problem in quantum chromodynamics and can emerge in effective theories of electrodynamics in topological insulators. Although analogue quantum simulators potentially offer a venue for realizing and controlling the θ-angle, doing so has hitherto remained an outstanding challenge. Here, we describe the experimental realization of a tunable topological θ-angle in a Bose–Hubbard gauge-theory quantum simulator, which was implemented through a tilted superlattice potential that induces an effective background electric field. We demonstrate the emerging physics through the direct observation of the confinement–deconfinement transition of (1 + 1)-dimensional quantum electrodynamics. Using an atomic-precision quantum gas microscope, we distinguish between the confined and deconfined phases by monitoring the real-time evolution of particle–antiparticle pairs. Our work provides a step forward in the realization of topological terms on modern quantum simulators. Topological terms arise naturally in gauge theories but have been difficult to implement in quantum simulators. Now, a tunable topological θ-angle is demonstrated with a cold-atom platform.

Abstract Image

Abstract Image

用可调拓扑θ角观察微观约束动力学
拓扑θ角是凝聚态和高能物理中几个规范理论的核心。例如,它负责量子色动力学中的强CP问题,并且可以出现在拓扑绝缘体的有效电动力学理论中。尽管模拟量子模拟器可能为实现和控制θ-角提供了一个场所,但迄今为止,这样做仍然是一个突出的挑战。在这里,我们描述了在玻色-哈伯德规范理论量子模拟器中可调谐拓扑θ-角的实验实现,这是通过倾斜的超晶格势来诱导有效的背景电场来实现的。我们通过直接观察(1 + 1)维量子电动力学的约束-定义跃迁来证明新兴物理学。利用原子精度的量子气体显微镜,我们通过监测粒子-反粒子对的实时演化来区分受限相和定义相。我们的工作为在现代量子模拟器上实现拓扑术语提供了一个进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信