Wei-Yong Zhang, Ying Liu, Yanting Cheng, Ming-Gen He, Han-Yi Wang, Tian-Yi Wang, Zi-Hang Zhu, Guo-Xian Su, Zhao-Yu Zhou, Yong-Guang Zheng, Hui Sun, Bing Yang, Philipp Hauke, Wei Zheng, Jad C. Halimeh, Zhen-Sheng Yuan, Jian-Wei Pan
{"title":"Observation of microscopic confinement dynamics by a tunable topological θ-angle","authors":"Wei-Yong Zhang, Ying Liu, Yanting Cheng, Ming-Gen He, Han-Yi Wang, Tian-Yi Wang, Zi-Hang Zhu, Guo-Xian Su, Zhao-Yu Zhou, Yong-Guang Zheng, Hui Sun, Bing Yang, Philipp Hauke, Wei Zheng, Jad C. Halimeh, Zhen-Sheng Yuan, Jian-Wei Pan","doi":"10.1038/s41567-024-02702-x","DOIUrl":null,"url":null,"abstract":"<p>The topological <i>θ</i>-angle is central to several gauge theories in condensed-matter and high-energy physics. For example, it is responsible for the strong CP problem in quantum chromodynamics and can emerge in effective theories of electrodynamics in topological insulators. Although analogue quantum simulators potentially offer a venue for realizing and controlling the <i>θ</i>-angle, doing so has hitherto remained an outstanding challenge. Here, we describe the experimental realization of a tunable topological <i>θ</i>-angle in a Bose–Hubbard gauge-theory quantum simulator, which was implemented through a tilted superlattice potential that induces an effective background electric field. We demonstrate the emerging physics through the direct observation of the confinement–deconfinement transition of (1 + 1)-dimensional quantum electrodynamics. Using an atomic-precision quantum gas microscope, we distinguish between the confined and deconfined phases by monitoring the real-time evolution of particle–antiparticle pairs. Our work provides a step forward in the realization of topological terms on modern quantum simulators.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"201 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-024-02702-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The topological θ-angle is central to several gauge theories in condensed-matter and high-energy physics. For example, it is responsible for the strong CP problem in quantum chromodynamics and can emerge in effective theories of electrodynamics in topological insulators. Although analogue quantum simulators potentially offer a venue for realizing and controlling the θ-angle, doing so has hitherto remained an outstanding challenge. Here, we describe the experimental realization of a tunable topological θ-angle in a Bose–Hubbard gauge-theory quantum simulator, which was implemented through a tilted superlattice potential that induces an effective background electric field. We demonstrate the emerging physics through the direct observation of the confinement–deconfinement transition of (1 + 1)-dimensional quantum electrodynamics. Using an atomic-precision quantum gas microscope, we distinguish between the confined and deconfined phases by monitoring the real-time evolution of particle–antiparticle pairs. Our work provides a step forward in the realization of topological terms on modern quantum simulators.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.