Transformation behavior and toxicity assessment of beaytlmethodeyammonNium chbride (BAC-12) disinfectant during hospital wastewater treatment.

Ruixue Guo, Jingjing Zhang, Jiaoqin Liu, Haifa E Alfassam, Hassan A Rudayni, Ahmed A Allam, Ruijuan Qu, Zongli Huo, Feng Zhu
{"title":"Transformation behavior and toxicity assessment of beaytlmethodeyammonNium chbride (BAC-12) disinfectant during hospital wastewater treatment.","authors":"Ruixue Guo, Jingjing Zhang, Jiaoqin Liu, Haifa E Alfassam, Hassan A Rudayni, Ahmed A Allam, Ruijuan Qu, Zongli Huo, Feng Zhu","doi":"10.1016/j.chemosphere.2024.143981","DOIUrl":null,"url":null,"abstract":"<p><p>This work focused on the transformation behavior of the emerging beaytlmethodeyammonium chbride (BAC-12) disinfectant existed in the treatment of medical sewage during its disinfection treatment. The degradation ability of ozone (O<sub>3</sub>) to BAC-12 was the best, followed by UV/NaOCl, UV, and NaOCl. The enhancement of BAC-12 in UV/NaOCl system is caused by the combined effect of UV photolysis, reactive chlorine species (RCS), and •OH. The transformation products of BAC-12 in the disinfection treatment were detected, and the chemical structure of products was rationalized by frontier molecular orbital and transition state theory methodologies. According to the ecological structure-activity relationship (ECOSAR) assessment, the intermediates of BAC-12 in UV, NaOCl, and UV/NaOCl treatments had lower half lethal concentration (LC<sub>50</sub>) and chronic toxicity (ChV) values with a higher ecotoxicity than BAC-12. O<sub>3</sub> disinfection treatment of these toxic intermediates can significantly reduce the toxicity of the BAC-12 solution. This work provides necessary information on the potential environmental risks of BAC-12 arising from different disinfection methods in the treatment of medical wastewater.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143981"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work focused on the transformation behavior of the emerging beaytlmethodeyammonium chbride (BAC-12) disinfectant existed in the treatment of medical sewage during its disinfection treatment. The degradation ability of ozone (O3) to BAC-12 was the best, followed by UV/NaOCl, UV, and NaOCl. The enhancement of BAC-12 in UV/NaOCl system is caused by the combined effect of UV photolysis, reactive chlorine species (RCS), and •OH. The transformation products of BAC-12 in the disinfection treatment were detected, and the chemical structure of products was rationalized by frontier molecular orbital and transition state theory methodologies. According to the ecological structure-activity relationship (ECOSAR) assessment, the intermediates of BAC-12 in UV, NaOCl, and UV/NaOCl treatments had lower half lethal concentration (LC50) and chronic toxicity (ChV) values with a higher ecotoxicity than BAC-12. O3 disinfection treatment of these toxic intermediates can significantly reduce the toxicity of the BAC-12 solution. This work provides necessary information on the potential environmental risks of BAC-12 arising from different disinfection methods in the treatment of medical wastewater.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信