PFAS (per- and polyfluorinated alkyl substances) as EDCs (endocrine-disrupting chemicals) - Identification of compounds with high potential to bind to selected terpenoids NHRs (nuclear hormone receptors).

Natalia Bulawska, Anita Sosnowska, Dominika Kowalska, Maciej Stępnik, Tomasz Puzyn
{"title":"PFAS (per- and polyfluorinated alkyl substances) as EDCs (endocrine-disrupting chemicals) - Identification of compounds with high potential to bind to selected terpenoids NHRs (nuclear hormone receptors).","authors":"Natalia Bulawska, Anita Sosnowska, Dominika Kowalska, Maciej Stępnik, Tomasz Puzyn","doi":"10.1016/j.chemosphere.2024.143967","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of the subsequent study was to examine the probability of PFAS (per- and polyfluorinated alkyl substances) binding to various NHRs (nuclear hormone receptors) and to identify their structural features that contribute most to the binding score (BS). We evaluated the BS for PFAS in relation to 7 selected NHRs - 4 with additional antagonist forms (Retinoid X receptor alpha - RXRα, Liver X receptor alpha - LXRα, Liver X receptor beta - LXRβ, Estrogen receptor alpha - ERα, Estrogen receptor alpha antagonist - anti-ERα, Estrogen receptor beta - ERβ, Estrogen receptor beta antagonist - anti-ERβ, Glucocorticoid receptor - GR, Glucocorticoid receptor antagonist - anti-GR, Androgen receptor - AR, Androgen receptor antagonist - anti-AR). We based our study on the results of molecular docking, which we used to develop MLR-QSAR (Multiple Linear Regression - Quantitative Structure-Activity Relationship) models. The models we developed allowed us to predict the BS for an extensive set of PFAS compounds from the NORMAN database (more than 4000) - virtual screening. The probability of PFAS binding to selected receptors was determined by structural features such as particle size, branching, and fluorine content. These variables were also identified in the literature reports of experimental studies as the most important for this group of compounds. The research focused on receptors from the terpenoid group. The RXRα, LXRα and β, GR, and anti-GR receptors were shown to be the group less likely to be affected by PFAS. Sex hormones such as AR, anti-AR, ERα and ERβ with their antagonist forms are the most affected.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143967"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of the subsequent study was to examine the probability of PFAS (per- and polyfluorinated alkyl substances) binding to various NHRs (nuclear hormone receptors) and to identify their structural features that contribute most to the binding score (BS). We evaluated the BS for PFAS in relation to 7 selected NHRs - 4 with additional antagonist forms (Retinoid X receptor alpha - RXRα, Liver X receptor alpha - LXRα, Liver X receptor beta - LXRβ, Estrogen receptor alpha - ERα, Estrogen receptor alpha antagonist - anti-ERα, Estrogen receptor beta - ERβ, Estrogen receptor beta antagonist - anti-ERβ, Glucocorticoid receptor - GR, Glucocorticoid receptor antagonist - anti-GR, Androgen receptor - AR, Androgen receptor antagonist - anti-AR). We based our study on the results of molecular docking, which we used to develop MLR-QSAR (Multiple Linear Regression - Quantitative Structure-Activity Relationship) models. The models we developed allowed us to predict the BS for an extensive set of PFAS compounds from the NORMAN database (more than 4000) - virtual screening. The probability of PFAS binding to selected receptors was determined by structural features such as particle size, branching, and fluorine content. These variables were also identified in the literature reports of experimental studies as the most important for this group of compounds. The research focused on receptors from the terpenoid group. The RXRα, LXRα and β, GR, and anti-GR receptors were shown to be the group less likely to be affected by PFAS. Sex hormones such as AR, anti-AR, ERα and ERβ with their antagonist forms are the most affected.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信