A simple model of coupled individual behavior and its impact on epidemic dynamics

IF 1.9 4区 数学 Q2 BIOLOGY
Jiangzhuo Chen , Baltazar Espinoza , Jingyuan Chou , Abba B. Gumel , Simon A. Levin , Madhav Marathe
{"title":"A simple model of coupled individual behavior and its impact on epidemic dynamics","authors":"Jiangzhuo Chen ,&nbsp;Baltazar Espinoza ,&nbsp;Jingyuan Chou ,&nbsp;Abba B. Gumel ,&nbsp;Simon A. Levin ,&nbsp;Madhav Marathe","doi":"10.1016/j.mbs.2024.109345","DOIUrl":null,"url":null,"abstract":"<div><div>Containing infectious disease outbreaks is a complex challenge that usually requires the deployment of multiple intervention strategies. While mathematical modeling of infectious diseases is a widely accepted tool to evaluate intervention strategies, most models and studies overlook the interdependence between individuals’ reactions to simultaneously implemented interventions. Intervention modeling efforts typically assume that individual adherence decisions are independent of each other. However, in the real world, individuals who are willing to comply with certain interventions may be more or less likely to comply with another intervention. The combined effect of interventions may depend on the correlation between adherence decisions. In this study, we consider vaccination and non-pharmaceutical interventions, and study how the correlation between individuals’ behaviors towards these two interventions strategies affects the epidemiological outcomes. Furthermore, we integrate disease surveillance in our model to study the effects of interventions triggered by surveillance events. This allows us to model a realistic operational context where surveillance informs the timing of interventions deployment, thereby influencing disease dynamics. Our results demonstrate the diverse effects of coupled individual behavior and highlight the importance of robust surveillance systems. Our study yields the following insights: <span><math><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></math></span> there exists a correlation level that minimizes the initial prevalence peak size; <span><math><mrow><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></mrow></math></span> the optimal correlation level depends on the disease’s basic reproduction number; <span><math><mrow><mo>(</mo><mi>i</mi><mi>i</mi><mi>i</mi><mo>)</mo></mrow></math></span> disease surveillance modulates the impact of interventions on reducing the epidemic burden.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"380 ","pages":"Article 109345"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424002050","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Containing infectious disease outbreaks is a complex challenge that usually requires the deployment of multiple intervention strategies. While mathematical modeling of infectious diseases is a widely accepted tool to evaluate intervention strategies, most models and studies overlook the interdependence between individuals’ reactions to simultaneously implemented interventions. Intervention modeling efforts typically assume that individual adherence decisions are independent of each other. However, in the real world, individuals who are willing to comply with certain interventions may be more or less likely to comply with another intervention. The combined effect of interventions may depend on the correlation between adherence decisions. In this study, we consider vaccination and non-pharmaceutical interventions, and study how the correlation between individuals’ behaviors towards these two interventions strategies affects the epidemiological outcomes. Furthermore, we integrate disease surveillance in our model to study the effects of interventions triggered by surveillance events. This allows us to model a realistic operational context where surveillance informs the timing of interventions deployment, thereby influencing disease dynamics. Our results demonstrate the diverse effects of coupled individual behavior and highlight the importance of robust surveillance systems. Our study yields the following insights: (i) there exists a correlation level that minimizes the initial prevalence peak size; (ii) the optimal correlation level depends on the disease’s basic reproduction number; (iii) disease surveillance modulates the impact of interventions on reducing the epidemic burden.
耦合个体行为及其对流行病动力学影响的简单模型。
遏制传染病爆发是一项复杂的挑战,通常需要采取多种干预策略。虽然传染病数学模型是一种广为接受的评估干预策略的工具,但大多数模型和研究都忽略了个人对同时实施的干预措施的反应之间的相互依存关系。干预建模工作通常假定个人的坚持决定是相互独立的。然而,在现实世界中,愿意遵守某些干预措施的个体可能更愿意或更不愿意遵守另一项干预措施。干预措施的综合效果可能取决于遵守决策之间的相关性。在本研究中,我们考虑了疫苗接种和非药物干预,并研究了个人对这两种干预策略的行为之间的相关性如何影响流行病学结果。此外,我们还将疾病监测纳入模型,研究监测事件引发的干预效果。这使我们能够模拟现实的操作环境,在这种环境下,监测为干预措施的部署时机提供信息,从而影响疾病动态。我们的研究结果表明了个人行为耦合所产生的各种影响,并强调了健全的监控系统的重要性。我们的研究得出了以下启示:(i) 存在一个相关水平,它能使初始流行高峰规模最小化;(ii) 最佳相关水平取决于疾病的基本繁殖数量;(iii) 疾病监测能调节干预措施对减少流行病负担的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信