Explainable Machine Learning Predictions for the Benefit From Chemotherapy in Advanced Non-Small Cell Lung Cancer Without Available Targeted Mutations

IF 1.9 4区 医学 Q3 RESPIRATORY SYSTEM
Zhao Shuang, Xiong Xingyu, Cheng Yue, Yu Mingjing
{"title":"Explainable Machine Learning Predictions for the Benefit From Chemotherapy in Advanced Non-Small Cell Lung Cancer Without Available Targeted Mutations","authors":"Zhao Shuang,&nbsp;Xiong Xingyu,&nbsp;Cheng Yue,&nbsp;Yu Mingjing","doi":"10.1111/crj.70044","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Non-small cell lung cancer (NSCLC) is a global health challenge. Chemotherapy remains the standard therapy for advanced NSCLC without mutations, but drug resistance often reduces effectiveness. Developing more effective methods to predict and monitor chemotherapy benefits early is crucial.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We carried out a retrospective cohort study of NSCLC patients without targeted mutations who received chemotherapy at West China Hospital from 2009 to 2013. We identified variables associated with chemotherapy outcomes and built four predictive models by machine learning. Shapley additive explanations (SHAP) interpreted the best model's predictions. The Kaplan–Meier method assessed key variables' impact on 5-year overall survival.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The study enrolled 461 NSCLC patients. Eight variables were selected for the model: differentiation, surgery history, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), total bilirubin (TBIL), total protein (TP), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH). The extreme gradient boosting (Xgboost) model exhibited superior discriminatory ability in predicting complete response (CR) probabilities to chemotherapy, with an AUC of 0.78. SHAP plots showed surgery history and high differentiation were related to CR benefits from chemotherapy. Absence of surgery, higher NLR, higher PLR, and higher LDH were all independent prognostic factors for poor survivals in NSCLC patients without mutations receiving chemotherapy.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>By machine learning, we developed a predictive model to assess chemotherapy benefits in NSCLC patients without targeted mutations, utilizing eight readily available and non-invasive clinical indicators. Demonstrating satisfactory predictive performance and clinical practicability, this model may help clinicians identify patients' tendency to benefit from chemotherapy, potentially improving their prognosis.</p>\n </section>\n </div>","PeriodicalId":55247,"journal":{"name":"Clinical Respiratory Journal","volume":"18 12","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/crj.70044","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Respiratory Journal","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/crj.70044","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Non-small cell lung cancer (NSCLC) is a global health challenge. Chemotherapy remains the standard therapy for advanced NSCLC without mutations, but drug resistance often reduces effectiveness. Developing more effective methods to predict and monitor chemotherapy benefits early is crucial.

Methods

We carried out a retrospective cohort study of NSCLC patients without targeted mutations who received chemotherapy at West China Hospital from 2009 to 2013. We identified variables associated with chemotherapy outcomes and built four predictive models by machine learning. Shapley additive explanations (SHAP) interpreted the best model's predictions. The Kaplan–Meier method assessed key variables' impact on 5-year overall survival.

Results

The study enrolled 461 NSCLC patients. Eight variables were selected for the model: differentiation, surgery history, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), total bilirubin (TBIL), total protein (TP), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH). The extreme gradient boosting (Xgboost) model exhibited superior discriminatory ability in predicting complete response (CR) probabilities to chemotherapy, with an AUC of 0.78. SHAP plots showed surgery history and high differentiation were related to CR benefits from chemotherapy. Absence of surgery, higher NLR, higher PLR, and higher LDH were all independent prognostic factors for poor survivals in NSCLC patients without mutations receiving chemotherapy.

Conclusions

By machine learning, we developed a predictive model to assess chemotherapy benefits in NSCLC patients without targeted mutations, utilizing eight readily available and non-invasive clinical indicators. Demonstrating satisfactory predictive performance and clinical practicability, this model may help clinicians identify patients' tendency to benefit from chemotherapy, potentially improving their prognosis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinical Respiratory Journal
Clinical Respiratory Journal 医学-呼吸系统
CiteScore
3.70
自引率
0.00%
发文量
104
审稿时长
>12 weeks
期刊介绍: Overview Effective with the 2016 volume, this journal will be published in an online-only format. Aims and Scope The Clinical Respiratory Journal (CRJ) provides a forum for clinical research in all areas of respiratory medicine from clinical lung disease to basic research relevant to the clinic. We publish original research, review articles, case studies, editorials and book reviews in all areas of clinical lung disease including: Asthma Allergy COPD Non-invasive ventilation Sleep related breathing disorders Interstitial lung diseases Lung cancer Clinical genetics Rhinitis Airway and lung infection Epidemiology Pediatrics CRJ provides a fast-track service for selected Phase II and Phase III trial studies. Keywords Clinical Respiratory Journal, respiratory, pulmonary, medicine, clinical, lung disease, Abstracting and Indexing Information Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Embase (Elsevier) Health & Medical Collection (ProQuest) Health Research Premium Collection (ProQuest) HEED: Health Economic Evaluations Database (Wiley-Blackwell) Hospital Premium Collection (ProQuest) Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) ProQuest Central (ProQuest) Science Citation Index Expanded (Clarivate Analytics) SCOPUS (Elsevier)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信