FOXF1 promotes ovarian cancer metastasis by facilitating HMGA2-mediated USP30-dependent S100A6 deubiquitination.

Xi Xu, Chaoju Gong, Yunfeng Wang, Zhidong Yin, Xiaogang Wang, Xuebiao Wu, Zejun Fang, Shumei Wei
{"title":"FOXF1 promotes ovarian cancer metastasis by facilitating HMGA2-mediated USP30-dependent S100A6 deubiquitination.","authors":"Xi Xu, Chaoju Gong, Yunfeng Wang, Zhidong Yin, Xiaogang Wang, Xuebiao Wu, Zejun Fang, Shumei Wei","doi":"10.1016/j.bbadis.2024.167633","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer is the most common type of gynecological malignant tumor, with the highest mortality rate among female genital malignant tumors. In this study, we initially identified forkhead box F1 (FOXF1) as a potential prognostic biomarker of ovarian cancer through bioinformatics analysis. FOXF1 expression was higher in ovarian cancer tissue samples and served as an unfavorable prognostic factor. In vitro and in vivo experiments demonstrated that FOXF1 enhanced ovarian cancer cell migration and tumor dissemination. Chromatin immunoprecipitation-polymerase chain reaction and luciferase assays revealed that FOXF1 bound directly to the high-mobility group AT-hook 2 (HMGA2) promoter and significantly induced its transcriptional activity. Subsequent co-immunoprecipitation and mass spectrometry analyses demonstrated that HMGA2 stabilized S100 calcium-binding protein A6 (S100A6) protein through recruitment of the deubiquitinase, ubiquitin-specific peptidase 30 (USP30), thereby inhibiting S100A6 degradation. Rescue experiments further illustrated that FOXF1 induced ovarian cancer cell mobility in an HMGA2/S100A6-dependent manner. Additionally, FOXF1, HMGA2, USP30, and S100A6 were clinically relevant in patients with ovarian cancer. This is the first study to reveal the molecular mechanisms underlying FOXF1-mediated ovarian cancer metastasis and demonstrate that FOXF1 represents a potential therapeutic target in patients with metastatic ovarian cancer.</p>","PeriodicalId":93896,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":" ","pages":"167633"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bbadis.2024.167633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ovarian cancer is the most common type of gynecological malignant tumor, with the highest mortality rate among female genital malignant tumors. In this study, we initially identified forkhead box F1 (FOXF1) as a potential prognostic biomarker of ovarian cancer through bioinformatics analysis. FOXF1 expression was higher in ovarian cancer tissue samples and served as an unfavorable prognostic factor. In vitro and in vivo experiments demonstrated that FOXF1 enhanced ovarian cancer cell migration and tumor dissemination. Chromatin immunoprecipitation-polymerase chain reaction and luciferase assays revealed that FOXF1 bound directly to the high-mobility group AT-hook 2 (HMGA2) promoter and significantly induced its transcriptional activity. Subsequent co-immunoprecipitation and mass spectrometry analyses demonstrated that HMGA2 stabilized S100 calcium-binding protein A6 (S100A6) protein through recruitment of the deubiquitinase, ubiquitin-specific peptidase 30 (USP30), thereby inhibiting S100A6 degradation. Rescue experiments further illustrated that FOXF1 induced ovarian cancer cell mobility in an HMGA2/S100A6-dependent manner. Additionally, FOXF1, HMGA2, USP30, and S100A6 were clinically relevant in patients with ovarian cancer. This is the first study to reveal the molecular mechanisms underlying FOXF1-mediated ovarian cancer metastasis and demonstrate that FOXF1 represents a potential therapeutic target in patients with metastatic ovarian cancer.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信