Characterization and functional analysis of a novel goose-type lysozyme from teleost Sebastes schlegelii with implications for antibacterial defense and immune cell modulation.

IF 1.9 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hao Jing, Xue Yan, Yue Wang, Kai Yang, Zi-Yue Chen, Guang-Hua Wang, Min Zhang
{"title":"Characterization and functional analysis of a novel goose-type lysozyme from teleost Sebastes schlegelii with implications for antibacterial defense and immune cell modulation.","authors":"Hao Jing, Xue Yan, Yue Wang, Kai Yang, Zi-Yue Chen, Guang-Hua Wang, Min Zhang","doi":"10.1016/j.cbpb.2024.111060","DOIUrl":null,"url":null,"abstract":"<p><p>Lysozymes are crucial enzymes involved in the innate immune response against bacterial pathogens. In this study, we identified and characterized a goose-type lysozyme gene (SsLyG) from the black rockfish Sebastes schlegelii, an economically important aquaculture species. The deduced amino acid sequence of SsLyG contains 495 residues, which inculded a signal peptide, an immunoglobulin domain, and a goose egg-white lysozyme (GEWL) domain. Tissue expression analysis revealed the highest SsLyG levels in blood, and its transcription was significantly upregulated in the spleen and kidney upon bacterial and polyI:C challenges. Recombinant SsLyGE (rSsLyGE) exhibited lytic activity against Micrococcus lysodeikticus and concentration-dependent binding ability to Staphylococcus aureus and Micrococcus luteus. Furthermore, rSsLyGE promoted peripheral blood lymphocyte proliferation, enhanced macrophage respiratory burst activity, and increased reactive oxygen species production. RNA interference-mediated knockdown of SsLyG resulted in higher bacterial loads in the liver and spleen after Listonella anguillarum challenge, suggesting its role in early antibacterial defense. Collectively, these findings provide insights into the immune function of SsLyG and its potential application in developing antimicrobial strategies for aquaculture.</p>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":" ","pages":"111060"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cbpb.2024.111060","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lysozymes are crucial enzymes involved in the innate immune response against bacterial pathogens. In this study, we identified and characterized a goose-type lysozyme gene (SsLyG) from the black rockfish Sebastes schlegelii, an economically important aquaculture species. The deduced amino acid sequence of SsLyG contains 495 residues, which inculded a signal peptide, an immunoglobulin domain, and a goose egg-white lysozyme (GEWL) domain. Tissue expression analysis revealed the highest SsLyG levels in blood, and its transcription was significantly upregulated in the spleen and kidney upon bacterial and polyI:C challenges. Recombinant SsLyGE (rSsLyGE) exhibited lytic activity against Micrococcus lysodeikticus and concentration-dependent binding ability to Staphylococcus aureus and Micrococcus luteus. Furthermore, rSsLyGE promoted peripheral blood lymphocyte proliferation, enhanced macrophage respiratory burst activity, and increased reactive oxygen species production. RNA interference-mediated knockdown of SsLyG resulted in higher bacterial loads in the liver and spleen after Listonella anguillarum challenge, suggesting its role in early antibacterial defense. Collectively, these findings provide insights into the immune function of SsLyG and its potential application in developing antimicrobial strategies for aquaculture.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
4.50%
发文量
77
审稿时长
22 days
期刊介绍: Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology. Part B: Biochemical and Molecular Biology (CBPB), focuses on biochemical physiology, primarily bioenergetics/energy metabolism, cell biology, cellular stress responses, enzymology, intermediary metabolism, macromolecular structure and function, gene regulation, evolutionary genetics. Most studies focus on biochemical or molecular analyses that have clear ramifications for physiological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信