Hetero-Oligomeric Protein Pores for Single-Molecule Sensing.

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Remya Satheesan, Asuma Janeena, Kozhinjampara R Mahendran
{"title":"Hetero-Oligomeric Protein Pores for Single-Molecule Sensing.","authors":"Remya Satheesan, Asuma Janeena, Kozhinjampara R Mahendran","doi":"10.1007/s00232-024-00331-2","DOIUrl":null,"url":null,"abstract":"<p><p>Protein nanopores are emerging as versatile single-molecule sensors with broad applications in DNA and protein sequencing. However, their narrow size restricts the range of detectable analytes, necessitating the development of advanced nanopores to broaden their applications in biotechnology. This review highlights a natural hetero-oligomeric porin, Nocardia farcinica porin AB (NfpAB), based on the Gram-positive mycolata, Nocardia farcinica. The pore comprises two subunits, NfpA and NfpB, that combine to form a stable structure with a unique pore geometry, asymmetrical shape, and charge distribution. Single-channel electrical recordings demonstrate that NfpAB forms stable, high-conductance channels suitable for sensing charged molecules, particularly cationic polypeptides and cyclic sugars. This pore offers advantages such as enhanced control over molecular interactions due to densely crowded charged residues, thus allowing the quantification of voltage-dependent translocation kinetics. Notably, NfpAB contains intrinsic cysteines in the pore lumen, providing an accessible site for thiol-based reactions and attachment of molecular adapters. We propose that such hetero-oligomeric pores will be effective for several applications in nanopore technology for biomolecular detection and sequencing.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-024-00331-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein nanopores are emerging as versatile single-molecule sensors with broad applications in DNA and protein sequencing. However, their narrow size restricts the range of detectable analytes, necessitating the development of advanced nanopores to broaden their applications in biotechnology. This review highlights a natural hetero-oligomeric porin, Nocardia farcinica porin AB (NfpAB), based on the Gram-positive mycolata, Nocardia farcinica. The pore comprises two subunits, NfpA and NfpB, that combine to form a stable structure with a unique pore geometry, asymmetrical shape, and charge distribution. Single-channel electrical recordings demonstrate that NfpAB forms stable, high-conductance channels suitable for sensing charged molecules, particularly cationic polypeptides and cyclic sugars. This pore offers advantages such as enhanced control over molecular interactions due to densely crowded charged residues, thus allowing the quantification of voltage-dependent translocation kinetics. Notably, NfpAB contains intrinsic cysteines in the pore lumen, providing an accessible site for thiol-based reactions and attachment of molecular adapters. We propose that such hetero-oligomeric pores will be effective for several applications in nanopore technology for biomolecular detection and sequencing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Biology
Journal of Membrane Biology 生物-生化与分子生物学
CiteScore
4.80
自引率
4.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function. Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations. While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信