Yoonjae Cho , Sampa Misra , Ravi Managuli , Richard G. Barr , Jeongmin Lee , Chulhong Kim
{"title":"Attention-based Fusion Network for Breast Cancer Segmentation and Classification Using Multi-modal Ultrasound Images","authors":"Yoonjae Cho , Sampa Misra , Ravi Managuli , Richard G. Barr , Jeongmin Lee , Chulhong Kim","doi":"10.1016/j.ultrasmedbio.2024.11.020","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Breast cancer is one of the most commonly occurring cancers in women. Thus, early detection and treatment of cancer lead to a better outcome for the patient. Ultrasound (US) imaging plays a crucial role in the early detection of breast cancer, providing a cost-effective, convenient, and safe diagnostic approach. To date, much research has been conducted to facilitate reliable and effective early diagnosis of breast cancer through US image analysis. Recently, with the introduction of machine learning technologies such as deep learning (DL), automated lesion segmentation and classification, the identification of malignant masses in US breasts has progressed, and computer-aided diagnosis (CAD) technology is being applied in clinics effectively. Herein, we propose a novel deep learning-based “segmentation + classification” model based on B- and SE-mode images.</div></div><div><h3>Methods</h3><div>For the segmentation task, we propose a Multi-Modal Fusion U-Net (MMF-U-Net), which segments lesions by mixing B- and SE-mode information through fusion blocks. After segmenting, the lesion area from the B- and SE-mode images is cropped using a predicted segmentation mask. The encoder part of the pre-trained MMF-U-Net model is then used on the cropped B- and SE-mode breast US images to classify benign and malignant lesions.</div></div><div><h3>Results</h3><div>The experimental results using the proposed method showed good segmentation and classification scores. The dice score, intersection over union (IoU), precision, and recall are 78.23%, 68.60%, 82.21%, and 80.58%, respectively, using the proposed MMF-U-Net on real-world clinical data. The classification accuracy is 98.46%.</div></div><div><h3>Conclusion</h3><div>Our results show that the proposed method will effectively segment the breast lesion area and can reliably classify the benign from malignant lesions.</div></div>","PeriodicalId":49399,"journal":{"name":"Ultrasound in Medicine and Biology","volume":"51 3","pages":"Pages 568-577"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasound in Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301562924004447","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Breast cancer is one of the most commonly occurring cancers in women. Thus, early detection and treatment of cancer lead to a better outcome for the patient. Ultrasound (US) imaging plays a crucial role in the early detection of breast cancer, providing a cost-effective, convenient, and safe diagnostic approach. To date, much research has been conducted to facilitate reliable and effective early diagnosis of breast cancer through US image analysis. Recently, with the introduction of machine learning technologies such as deep learning (DL), automated lesion segmentation and classification, the identification of malignant masses in US breasts has progressed, and computer-aided diagnosis (CAD) technology is being applied in clinics effectively. Herein, we propose a novel deep learning-based “segmentation + classification” model based on B- and SE-mode images.
Methods
For the segmentation task, we propose a Multi-Modal Fusion U-Net (MMF-U-Net), which segments lesions by mixing B- and SE-mode information through fusion blocks. After segmenting, the lesion area from the B- and SE-mode images is cropped using a predicted segmentation mask. The encoder part of the pre-trained MMF-U-Net model is then used on the cropped B- and SE-mode breast US images to classify benign and malignant lesions.
Results
The experimental results using the proposed method showed good segmentation and classification scores. The dice score, intersection over union (IoU), precision, and recall are 78.23%, 68.60%, 82.21%, and 80.58%, respectively, using the proposed MMF-U-Net on real-world clinical data. The classification accuracy is 98.46%.
Conclusion
Our results show that the proposed method will effectively segment the breast lesion area and can reliably classify the benign from malignant lesions.
期刊介绍:
Ultrasound in Medicine and Biology is the official journal of the World Federation for Ultrasound in Medicine and Biology. The journal publishes original contributions that demonstrate a novel application of an existing ultrasound technology in clinical diagnostic, interventional and therapeutic applications, new and improved clinical techniques, the physics, engineering and technology of ultrasound in medicine and biology, and the interactions between ultrasound and biological systems, including bioeffects. Papers that simply utilize standard diagnostic ultrasound as a measuring tool will be considered out of scope. Extended critical reviews of subjects of contemporary interest in the field are also published, in addition to occasional editorial articles, clinical and technical notes, book reviews, letters to the editor and a calendar of forthcoming meetings. It is the aim of the journal fully to meet the information and publication requirements of the clinicians, scientists, engineers and other professionals who constitute the biomedical ultrasonic community.