Tuoyu Chen, Shuo Wang, Bo Li, Kaiyuan Yang, Weitao Man, Xiumei Wang
{"title":"[Clinical application of mineralized collagen scaffolds in surgical treatment of skull defects].","authors":"Tuoyu Chen, Shuo Wang, Bo Li, Kaiyuan Yang, Weitao Man, Xiumei Wang","doi":"10.7507/1002-1892.202405012","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To explore the clinical application value of mineralized collagen (MC) bone scaffolds in repairing various types of skull defects, and to assess the suitability and repair effectiveness of porous MC (pMC) scaffolds, compact MC (cMC) scaffolds, and biphasic MC composite (bMC) scaffolds.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on the clinical data of 105 patients who underwent skull defect repair with pMC, cMC, or bMC between October 2014 and April 2022. The cohort included 63 males and 42 females, ranging in age from 3 months to 55 years, with a median age of 22.7 years. Causes of defects included craniectomy after traumatic surgery in 37 cases, craniotomy in 58 cases, tumor recurrence or intracranial hemorrhage surgery in 10 cases. Appropriate MC scaffolds were selected based on the patient's skull defect size and age: 58 patients with defects <3 cm² underwent skull repair with pMC (pMC group), 45 patients with defects ≥3 cm² and aged ≥5 years underwent skull repair with cMC (cMC group), and 2 patients with defects ≥3 cm² and aged <5 years underwent skull repair with bMC (bMC group). Postoperative clinical follow-up and imaging examinations were conducted to evaluate bone regeneration, the biocompatibility of the repair materials, and the occurrence of complications.</p><p><strong>Results: </strong>All 105 patients were followed up 3-24 months, with an average of 13 months. No material-related complication occurred in any patient, including skin and subcutaneous tissue infection, excessive ossification, and rejection. CT scans at 6 months postoperatively showed bone growth in all patients, and CT scans at 12 months postoperatively showed complete or near-complete resolution of bone defects in all patients, with 58 cases repaired in the pMC group. The CT values of the defect site and the contralateral normal skull bone in the pMC group at 12 months postoperatively were (1 123.74±93.64) HU and (1 128.14±92.57) HU, respectively, with no significant difference ( <i>t</i>=0.261, <i>P</i>=0.795).</p><p><strong>Conclusion: </strong>MC exhibits good biocompatibility and osteogenic induction ability in skull defect repair. pMC is suitable for repairing small defects, cMC is suitable for repairing large defects, and bMC is suitable for repairing pediatric skull defects.</p>","PeriodicalId":23979,"journal":{"name":"中国修复重建外科杂志","volume":"38 12","pages":"1427-1432"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国修复重建外科杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7507/1002-1892.202405012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To explore the clinical application value of mineralized collagen (MC) bone scaffolds in repairing various types of skull defects, and to assess the suitability and repair effectiveness of porous MC (pMC) scaffolds, compact MC (cMC) scaffolds, and biphasic MC composite (bMC) scaffolds.
Methods: A retrospective analysis was conducted on the clinical data of 105 patients who underwent skull defect repair with pMC, cMC, or bMC between October 2014 and April 2022. The cohort included 63 males and 42 females, ranging in age from 3 months to 55 years, with a median age of 22.7 years. Causes of defects included craniectomy after traumatic surgery in 37 cases, craniotomy in 58 cases, tumor recurrence or intracranial hemorrhage surgery in 10 cases. Appropriate MC scaffolds were selected based on the patient's skull defect size and age: 58 patients with defects <3 cm² underwent skull repair with pMC (pMC group), 45 patients with defects ≥3 cm² and aged ≥5 years underwent skull repair with cMC (cMC group), and 2 patients with defects ≥3 cm² and aged <5 years underwent skull repair with bMC (bMC group). Postoperative clinical follow-up and imaging examinations were conducted to evaluate bone regeneration, the biocompatibility of the repair materials, and the occurrence of complications.
Results: All 105 patients were followed up 3-24 months, with an average of 13 months. No material-related complication occurred in any patient, including skin and subcutaneous tissue infection, excessive ossification, and rejection. CT scans at 6 months postoperatively showed bone growth in all patients, and CT scans at 12 months postoperatively showed complete or near-complete resolution of bone defects in all patients, with 58 cases repaired in the pMC group. The CT values of the defect site and the contralateral normal skull bone in the pMC group at 12 months postoperatively were (1 123.74±93.64) HU and (1 128.14±92.57) HU, respectively, with no significant difference ( t=0.261, P=0.795).
Conclusion: MC exhibits good biocompatibility and osteogenic induction ability in skull defect repair. pMC is suitable for repairing small defects, cMC is suitable for repairing large defects, and bMC is suitable for repairing pediatric skull defects.