{"title":"Balanced water and heat energy recycling by full evaporation of wastewater (FEW) in dry biorefining processes of lignocellulose biomass.","authors":"Ya Wang, Bin Zhang, Xiucai Liu, Jie Bao","doi":"10.1016/j.wasman.2024.12.018","DOIUrl":null,"url":null,"abstract":"<p><p>Lignocellulosic biorefinery technology requires minimum energy consumption and wastewater generation to overcome challenges in industrial applications. This study established a rigorous model and a comprehensive physical property database of dry biorefining process on Aspen Plus platform for production including L-lactic acid, citric acid, sodium sugar acids, amino acid, and ethanol based on the experimental data. Full evaporation of wastewater (FEW) approach was proposed to completely replaced the external steam supply, and significantly reduced the freshwater input by 67% ∼ 85% and wastewater generation by 64% ∼ 89%, depending on the specific products. The carbon-neutral heat energy from lignin residue combustion generates an extra heat output of 1.098 ∼ 4.772 GJ per ton of dry wheat straw (DW) after all the heat energy needs of the biorefinery process and FEW treatments are satisfied, equivalent to a reduction of 0.219 ∼ 0.952 kg CO<sub>2</sub> eq/kg DM emission. This study provided a self-consistent solution for water and energy balance in biorefinery processes.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"193 ","pages":"307-316"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2024.12.018","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lignocellulosic biorefinery technology requires minimum energy consumption and wastewater generation to overcome challenges in industrial applications. This study established a rigorous model and a comprehensive physical property database of dry biorefining process on Aspen Plus platform for production including L-lactic acid, citric acid, sodium sugar acids, amino acid, and ethanol based on the experimental data. Full evaporation of wastewater (FEW) approach was proposed to completely replaced the external steam supply, and significantly reduced the freshwater input by 67% ∼ 85% and wastewater generation by 64% ∼ 89%, depending on the specific products. The carbon-neutral heat energy from lignin residue combustion generates an extra heat output of 1.098 ∼ 4.772 GJ per ton of dry wheat straw (DW) after all the heat energy needs of the biorefinery process and FEW treatments are satisfied, equivalent to a reduction of 0.219 ∼ 0.952 kg CO2 eq/kg DM emission. This study provided a self-consistent solution for water and energy balance in biorefinery processes.
期刊介绍:
Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes.
Scope:
Addresses solid wastes in both industrialized and economically developing countries
Covers various types of solid wastes, including:
Municipal (e.g., residential, institutional, commercial, light industrial)
Agricultural
Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)