Identification of Brucella RS15060 as a novel type IV secretion system effector associated with bacterial virulence.

IF 3.7 1区 农林科学 Q1 VETERINARY SCIENCES
Yi Yin, Mingxing Tian, Guangdong Zhang, Hai Hu, Chan Ding, Shengqing Yu
{"title":"Identification of Brucella RS15060 as a novel type IV secretion system effector associated with bacterial virulence.","authors":"Yi Yin, Mingxing Tian, Guangdong Zhang, Hai Hu, Chan Ding, Shengqing Yu","doi":"10.1186/s13567-024-01417-4","DOIUrl":null,"url":null,"abstract":"<p><p>Brucella is an intracellular parasitic pathogen that causes the worldwide zoonotic disease brucellosis. The type IV secretion system (T4SS) is utilized to secrete various effectors to help Brucella form Brucella-containing vacuoles within the cell and accomplish intracellular trafficking and replication. Brucella has fewer recognized effector proteins than other intracellular parasites in the Proteobacteria, indicating that Brucella may contain a large number of unidentified effector proteins. In this study, the optimal conditions for inducing protein secretion from Brucella were screened, and the secreted proteins of 2308 and the T4SS-deficient mutant SV123 under optimal conditions were collected for comparative proteomics analysis. By label-free quantitative proteomics, we identified 15 differential proteins. Through the β-lactamase TEM1 assay and indirect immunofluorescence assay, we identified RS15060 and RS10635 as novel T4SS effectors. Furthermore, by constructing mutation strains and performing cell/mouse infection experiments, we found that deletion of the rs15060 gene reduced the capacity of Brucella to replicate in cells and cause chronic infection in mice. In conclusion, a novel Brucella T4SS effector protein, RS15060, was identified to be associated with virulence in this study, and the discovery of effector proteins is conducive to a more comprehensive elucidation of T4SS function as well as to uncovering the cryptic strategies of Brucella survival in cells.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"55 1","pages":"168"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-024-01417-4","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Brucella is an intracellular parasitic pathogen that causes the worldwide zoonotic disease brucellosis. The type IV secretion system (T4SS) is utilized to secrete various effectors to help Brucella form Brucella-containing vacuoles within the cell and accomplish intracellular trafficking and replication. Brucella has fewer recognized effector proteins than other intracellular parasites in the Proteobacteria, indicating that Brucella may contain a large number of unidentified effector proteins. In this study, the optimal conditions for inducing protein secretion from Brucella were screened, and the secreted proteins of 2308 and the T4SS-deficient mutant SV123 under optimal conditions were collected for comparative proteomics analysis. By label-free quantitative proteomics, we identified 15 differential proteins. Through the β-lactamase TEM1 assay and indirect immunofluorescence assay, we identified RS15060 and RS10635 as novel T4SS effectors. Furthermore, by constructing mutation strains and performing cell/mouse infection experiments, we found that deletion of the rs15060 gene reduced the capacity of Brucella to replicate in cells and cause chronic infection in mice. In conclusion, a novel Brucella T4SS effector protein, RS15060, was identified to be associated with virulence in this study, and the discovery of effector proteins is conducive to a more comprehensive elucidation of T4SS function as well as to uncovering the cryptic strategies of Brucella survival in cells.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Veterinary Research
Veterinary Research 农林科学-兽医学
CiteScore
7.00
自引率
4.50%
发文量
92
审稿时长
3 months
期刊介绍: Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信