Heat shock protein 70 enhances viral replication by stabilizing Senecavirus A nonstructural proteins L and 3D.

IF 3.7 1区 农林科学 Q1 VETERINARY SCIENCES
Lei Hou, Penghui Zeng, Zhi Wu, Xiaoyu Yang, Jinshuo Guo, Yongyan Shi, Jiangwei Song, Jianwei Zhou, Jue Liu
{"title":"Heat shock protein 70 enhances viral replication by stabilizing Senecavirus A nonstructural proteins L and 3D.","authors":"Lei Hou, Penghui Zeng, Zhi Wu, Xiaoyu Yang, Jinshuo Guo, Yongyan Shi, Jiangwei Song, Jianwei Zhou, Jue Liu","doi":"10.1186/s13567-024-01414-7","DOIUrl":null,"url":null,"abstract":"<p><p>Senecavirus A (SVA) is an emerging pathogen that causes idiopathic vesicular infections in pig herds, posing a potential threat to their production performance. Heat shock protein 70 (Hsp70) is a molecular chaperone that plays an important role in host homeostasis under both physiological and stress conditions. However, the effects of Hsp70 on SVA infection and its underlying regulatory mechanisms remain unclear. Here, we confirmed that Hsp70 expression promotes SVA infection, as evidenced by the expression of viral proteins, viral titers, and the number of rSVA-eGFP-infected cells. This positive regulatory role of Hsp70 is mainly involved in post-entry stages of SVA. Viral proteins that interacted with Hsp70 were screened, and co-immunoprecipitation (co-IP) shows an interaction between Hsp70 and SVA L and 3D proteins. Subsequently, we determined that the expression of Hsp70 is beneficial for the stability of the SVA L and 3D proteins. Additionally, the substrate-binding domain (SBD) of Hsp70 plays an important role in the interaction between Hsp70 and SVA L or 3D proteins; and the deletion of this domain results in the loss of the stabilizing effect of Hsp70 on SVA L and 3D proteins and the positive regulatory effect of Hsp70 on SVA replication. These results reveal that Hsp70 promotes SVA infection by stabilizing viral L and 3D proteins and provides a strategy for preventing and controlling SVA infection.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"55 1","pages":"158"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-024-01414-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Senecavirus A (SVA) is an emerging pathogen that causes idiopathic vesicular infections in pig herds, posing a potential threat to their production performance. Heat shock protein 70 (Hsp70) is a molecular chaperone that plays an important role in host homeostasis under both physiological and stress conditions. However, the effects of Hsp70 on SVA infection and its underlying regulatory mechanisms remain unclear. Here, we confirmed that Hsp70 expression promotes SVA infection, as evidenced by the expression of viral proteins, viral titers, and the number of rSVA-eGFP-infected cells. This positive regulatory role of Hsp70 is mainly involved in post-entry stages of SVA. Viral proteins that interacted with Hsp70 were screened, and co-immunoprecipitation (co-IP) shows an interaction between Hsp70 and SVA L and 3D proteins. Subsequently, we determined that the expression of Hsp70 is beneficial for the stability of the SVA L and 3D proteins. Additionally, the substrate-binding domain (SBD) of Hsp70 plays an important role in the interaction between Hsp70 and SVA L or 3D proteins; and the deletion of this domain results in the loss of the stabilizing effect of Hsp70 on SVA L and 3D proteins and the positive regulatory effect of Hsp70 on SVA replication. These results reveal that Hsp70 promotes SVA infection by stabilizing viral L and 3D proteins and provides a strategy for preventing and controlling SVA infection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Veterinary Research
Veterinary Research 农林科学-兽医学
CiteScore
7.00
自引率
4.50%
发文量
92
审稿时长
3 months
期刊介绍: Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信