Nicholas Kortessis, José Miguel Ponciano, Franz W Simon, Jake M Ferguson
{"title":"Increasing environmental fluctuations can dampen variability of endogenously cycling populations.","authors":"Nicholas Kortessis, José Miguel Ponciano, Franz W Simon, Jake M Ferguson","doi":"10.1098/rsos.241066","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how populations respond to increasingly variable conditions is a major objective for natural resource managers forecasting extinction risk. The lesson from current modelling is clear: increasing environmental variability increases population abundance variability. We show that this paradigm fails to describe a broad class of empirically observed dynamics, namely endogenously driven population cycles. In contrast to the dominant paradigm, these populations can exhibit reduced long-run population variance under increasing environmental variability. We provide evidence for a mechanistic explanation of this phenomenon that relies on how stochasticity interacts with long transient dynamics present in the deterministic cycling model. This interaction stands in contrast to the often assumed additivity of stochastic and deterministic drivers of population fluctuations. We show evidence for the phenomenon in two cyclical populations: flour beetles and Canadian lynx. We quantify the impact of the phenomenon with new theory that partitions the effects of nonlinear dynamics and stochastic variation on dynamical systems. In both empirical examples, the partitioning shows that the interaction between deterministic and stochastic dynamics reduces the variance in population size. Our results highlight that previous predictions about extinction under environmental variability may prove inadequate to understand the effects of climate change in some populations.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 12","pages":"241066"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651921/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.241066","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how populations respond to increasingly variable conditions is a major objective for natural resource managers forecasting extinction risk. The lesson from current modelling is clear: increasing environmental variability increases population abundance variability. We show that this paradigm fails to describe a broad class of empirically observed dynamics, namely endogenously driven population cycles. In contrast to the dominant paradigm, these populations can exhibit reduced long-run population variance under increasing environmental variability. We provide evidence for a mechanistic explanation of this phenomenon that relies on how stochasticity interacts with long transient dynamics present in the deterministic cycling model. This interaction stands in contrast to the often assumed additivity of stochastic and deterministic drivers of population fluctuations. We show evidence for the phenomenon in two cyclical populations: flour beetles and Canadian lynx. We quantify the impact of the phenomenon with new theory that partitions the effects of nonlinear dynamics and stochastic variation on dynamical systems. In both empirical examples, the partitioning shows that the interaction between deterministic and stochastic dynamics reduces the variance in population size. Our results highlight that previous predictions about extinction under environmental variability may prove inadequate to understand the effects of climate change in some populations.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.