Material Recovery Facilities (MRFs) in the United States: Operations, revenue, and the impact of scale.

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Sabrina L Bradshaw, Horacio A Aguirre-Villegas, Suzanne E Boxman, Craig H Benson
{"title":"Material Recovery Facilities (MRFs) in the United States: Operations, revenue, and the impact of scale.","authors":"Sabrina L Bradshaw, Horacio A Aguirre-Villegas, Suzanne E Boxman, Craig H Benson","doi":"10.1016/j.wasman.2024.12.008","DOIUrl":null,"url":null,"abstract":"<p><p>An analysis was conducted using nationwide survey data to evaluate how material recovery facilities (MRFs) operations vary regionally and with scale. The survey characterized materials, processes, and energy use involved with operations, and revenue for recyclables. This is the first nationwide analysis of MRFs in the US that accounts for mass processed, energy consumed, and revenue. Of a population of 521 MRFs, 48 responses representing MRFs from five US regions were received and analyzed (9.2 % response rate). Responses were analyzed by size according to yearly mass of inbound materials (small: <1,000 Mg/year, medium: 1,000-10,000 Mg/year, and large: >10,000 Mg/year). Most MRFs identify as single-stream; source from residences; utilize tipping floors, picking lines, baling and warehousing; and are powered by electricity. Most revenue and inbound mass (>50 %) came from fiber (cardboard and paper). Glass had little revenue, and plastics were difficult to transition to market. Percent residue ranged from 1-39 %, averaged < 20 %, and increased as the mass of inbound material increased. Large MRFs reported more sources of material, employed advanced sorting technology, had greater plastics revenue (33 % versus 5 % for small MRFs), and had more market access for plastics compared to small MRFs. Large MRFs had two orders of magnitude less annual electricity consumption per Mg recyclables than small MRFs (5-90 kWh/Mg versus ∼ 300-550 kWh/Mg). Results demonstrate environmental and economic benefits of larger-scale MRFs, which could be implemented more broadly in the US through regional hub-and-spoke arrangements for collecting and processing recyclables, lowering energy consumption and increasing revenue for recyclables.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"193 ","pages":"317-327"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2024.12.008","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

An analysis was conducted using nationwide survey data to evaluate how material recovery facilities (MRFs) operations vary regionally and with scale. The survey characterized materials, processes, and energy use involved with operations, and revenue for recyclables. This is the first nationwide analysis of MRFs in the US that accounts for mass processed, energy consumed, and revenue. Of a population of 521 MRFs, 48 responses representing MRFs from five US regions were received and analyzed (9.2 % response rate). Responses were analyzed by size according to yearly mass of inbound materials (small: <1,000 Mg/year, medium: 1,000-10,000 Mg/year, and large: >10,000 Mg/year). Most MRFs identify as single-stream; source from residences; utilize tipping floors, picking lines, baling and warehousing; and are powered by electricity. Most revenue and inbound mass (>50 %) came from fiber (cardboard and paper). Glass had little revenue, and plastics were difficult to transition to market. Percent residue ranged from 1-39 %, averaged < 20 %, and increased as the mass of inbound material increased. Large MRFs reported more sources of material, employed advanced sorting technology, had greater plastics revenue (33 % versus 5 % for small MRFs), and had more market access for plastics compared to small MRFs. Large MRFs had two orders of magnitude less annual electricity consumption per Mg recyclables than small MRFs (5-90 kWh/Mg versus ∼ 300-550 kWh/Mg). Results demonstrate environmental and economic benefits of larger-scale MRFs, which could be implemented more broadly in the US through regional hub-and-spoke arrangements for collecting and processing recyclables, lowering energy consumption and increasing revenue for recyclables.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信