{"title":"The Effect of Green-Synthesized Nanoparticles on Dental Caries-Causing Bacteria: A Systematic Review.","authors":"Asma Sepahdar, Behnoush Selahbarzin, Atoosa Vaez Naini, Samira Jafari, Mehrnaz Moradi, Pegah Shakib","doi":"10.2174/0118722083343723241204053839","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In this study, a comprehensive search was conducted across multiple databases, including PubMed, Google Scholar, SID, Scopus, Medline, and Web of Science, as well as selected herbal medicine journals. The inclusion of herbal medicine journals was justified by the growing interest in green-synthesized nanoparticles derived from plant extracts, which are relevant to the focus of this review. Articles published between 2015 and 2023 were evaluated. To ensure a robust selection process, studies were assessed for quality using specific criteria beyond the AXIS checklist, including study design, sample size, and methodological rigor. Any discrepancies between reviewers were resolved through discussion or consultation with a third reviewer. This approach aimed to minimize bias and ensure the inclusion of high-quality studies that contribute meaningfully to the review's objectives.</p><p><strong>Objective: </strong>The primary objective of this review was to investigate the therapeutic implications of green-synthesized metallic nanoparticles, such as silver and zinc nanoparticles, in addressing dental caries, with a focus on their antibacterial properties and potential to improve current treatment modalities.</p><p><strong>Materials and methods: </strong>In this study, PubMed, Google Scholar, SID, Scopus, Medline, Web of Science, and herbal medicine journals were searched, and articles from 2015 to 2023 were evaluated.</p><p><strong>Results: </strong>In this study, 22 clinical trials were reviewed, and the effectiveness of synthesized nanoparticles was demonstrated in nearly all of them. The nanoparticles found to be most effective against tooth decay-causing bacteria include silver, zinc, selenium, nickel, and copper nanoparticles. To provide greater clarity, key findings, such as nanoparticle size, minimum inhibitory concentration (MIC) values, and specific antibacterial effects, are presented in a table. Additionally, a more in-depth comparison was made between these nanoparticles, focusing on their relative effectiveness under different conditions. For example, silver nanoparticles were consistently effective across various trials due to their strong antimicrobial properties, while zinc and copper nanoparticles showed efficacy in specific concentrations and against particular bacterial strains. Furthermore, green-synthesized nanoparticles were compared with those produced using traditional methods, evaluating factors, such as effectiveness, scalability, and safety, to provide a comprehensive understanding of their potential in dental caries treatment.</p><p><strong>Conclusion: </strong>According to the literature review, nanoparticles with antibacterial properties have the potential to serve as an alternative or complement to conventional chemical treatments for combating tooth decay. Future research should focus on exploring specific types of nanoparticles, such as green-synthesized metallic nanoparticles (e.g., silver and zinc), which have shown promising antibacterial effects. Additionally, more emphasis should be placed on optimizing synthesis methods that enhance biocompatibility and scalability for clinical use. The development of affordable treatment options using medicinal plants for green synthesis is particularly promising and should be further explored to make nanoparticle-based therapies more accessible in clinical settings.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118722083343723241204053839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: In this study, a comprehensive search was conducted across multiple databases, including PubMed, Google Scholar, SID, Scopus, Medline, and Web of Science, as well as selected herbal medicine journals. The inclusion of herbal medicine journals was justified by the growing interest in green-synthesized nanoparticles derived from plant extracts, which are relevant to the focus of this review. Articles published between 2015 and 2023 were evaluated. To ensure a robust selection process, studies were assessed for quality using specific criteria beyond the AXIS checklist, including study design, sample size, and methodological rigor. Any discrepancies between reviewers were resolved through discussion or consultation with a third reviewer. This approach aimed to minimize bias and ensure the inclusion of high-quality studies that contribute meaningfully to the review's objectives.
Objective: The primary objective of this review was to investigate the therapeutic implications of green-synthesized metallic nanoparticles, such as silver and zinc nanoparticles, in addressing dental caries, with a focus on their antibacterial properties and potential to improve current treatment modalities.
Materials and methods: In this study, PubMed, Google Scholar, SID, Scopus, Medline, Web of Science, and herbal medicine journals were searched, and articles from 2015 to 2023 were evaluated.
Results: In this study, 22 clinical trials were reviewed, and the effectiveness of synthesized nanoparticles was demonstrated in nearly all of them. The nanoparticles found to be most effective against tooth decay-causing bacteria include silver, zinc, selenium, nickel, and copper nanoparticles. To provide greater clarity, key findings, such as nanoparticle size, minimum inhibitory concentration (MIC) values, and specific antibacterial effects, are presented in a table. Additionally, a more in-depth comparison was made between these nanoparticles, focusing on their relative effectiveness under different conditions. For example, silver nanoparticles were consistently effective across various trials due to their strong antimicrobial properties, while zinc and copper nanoparticles showed efficacy in specific concentrations and against particular bacterial strains. Furthermore, green-synthesized nanoparticles were compared with those produced using traditional methods, evaluating factors, such as effectiveness, scalability, and safety, to provide a comprehensive understanding of their potential in dental caries treatment.
Conclusion: According to the literature review, nanoparticles with antibacterial properties have the potential to serve as an alternative or complement to conventional chemical treatments for combating tooth decay. Future research should focus on exploring specific types of nanoparticles, such as green-synthesized metallic nanoparticles (e.g., silver and zinc), which have shown promising antibacterial effects. Additionally, more emphasis should be placed on optimizing synthesis methods that enhance biocompatibility and scalability for clinical use. The development of affordable treatment options using medicinal plants for green synthesis is particularly promising and should be further explored to make nanoparticle-based therapies more accessible in clinical settings.
期刊介绍:
Recent Patents on Biotechnology publishes review articles by experts on recent patents on biotechnology. A selection of important and recent patents on biotechnology is also included in the journal. The journal is essential reading for all researchers involved in all fields of biotechnology.