Antifungal Activity of Alcoholic Extract of Allium Jesdianum on Fungi-Contaminated Dairy Products.

Q3 Biochemistry, Genetics and Molecular Biology
Fatemeh Fallahi, Shirin Naghdifar, Zahra Sadri Irani, Seyed Mohammad Mahdi Kazemi, Pegah Shakib, Mahboobeh Madani
{"title":"Antifungal Activity of Alcoholic Extract of Allium Jesdianum on Fungi-Contaminated Dairy Products.","authors":"Fatemeh Fallahi, Shirin Naghdifar, Zahra Sadri Irani, Seyed Mohammad Mahdi Kazemi, Pegah Shakib, Mahboobeh Madani","doi":"10.2174/0118722083332626241129061731","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>One of the main sources of contaminated dairy products is moldy fungi, specifically species of Aspergillus and Penicillium. This study aimed to evaluate the effect of the alcoholic extract of Allium jesdianum plant on the growth of molds contaminating dairy products in Isfahan.</p><p><strong>Materials and methods: </strong>In this research, 200 samples of dairy products were gathered from different areas of Isfahan city, including 70 samples of cheese, 60 samples of buttermilk, 40 samples of yogurt, 20 samples of curd, and 10 samples of cream. The antifungal activity of Allium jesdianum plant was investigated by the diffusion method in disc, well, and agar dilution in various concentrations. Minimum inhibitory concentration (MIC) and minimum fatal concentration (MFC) were also determined. Aspergillus, Penicillium, Cladosporium, and Acremonium fungi were the most commonly found fungal contaminants of this investigation. Antifungal activity was not observed by disc diffusion and well diffusion methods.</p><p><strong>Results: </strong>In the agar dilution method, ethanolic and methanolic extracts of stem and leaves in concentrations of 80, 60, 40, and 30 mg/ml, and ethanolic and methanolic extracts of plant bulbs in concentrations of 60 and 30 mg/ml revealed antifungal activity against Aspergillus niger, Penicillium notatum, and Penicillium chrysogenum. The MIC of stem and leaf ethanol extracts and onion ethanol for Aspergillus niger was 18.7, and for Penicillium notatum and Penicillium chrysogenum, it was 37.5, 37.5, 37.5, and 37.5 mg/ml. Fungal contamination of dairy products is a serious threat to the public health of society. Therefore, identifying medicinal plants with antifungal activity can be an effective step in preventing fungal contamination and increasing the shelf life of these products.</p><p><strong>Conclusion: </strong>The results of this research have shown that the Allium jesdianum plant can inhibit the growth of Aspergillus niger, Penicillium notatum, and Penicillium chrysogenum.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118722083332626241129061731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Background: One of the main sources of contaminated dairy products is moldy fungi, specifically species of Aspergillus and Penicillium. This study aimed to evaluate the effect of the alcoholic extract of Allium jesdianum plant on the growth of molds contaminating dairy products in Isfahan.

Materials and methods: In this research, 200 samples of dairy products were gathered from different areas of Isfahan city, including 70 samples of cheese, 60 samples of buttermilk, 40 samples of yogurt, 20 samples of curd, and 10 samples of cream. The antifungal activity of Allium jesdianum plant was investigated by the diffusion method in disc, well, and agar dilution in various concentrations. Minimum inhibitory concentration (MIC) and minimum fatal concentration (MFC) were also determined. Aspergillus, Penicillium, Cladosporium, and Acremonium fungi were the most commonly found fungal contaminants of this investigation. Antifungal activity was not observed by disc diffusion and well diffusion methods.

Results: In the agar dilution method, ethanolic and methanolic extracts of stem and leaves in concentrations of 80, 60, 40, and 30 mg/ml, and ethanolic and methanolic extracts of plant bulbs in concentrations of 60 and 30 mg/ml revealed antifungal activity against Aspergillus niger, Penicillium notatum, and Penicillium chrysogenum. The MIC of stem and leaf ethanol extracts and onion ethanol for Aspergillus niger was 18.7, and for Penicillium notatum and Penicillium chrysogenum, it was 37.5, 37.5, 37.5, and 37.5 mg/ml. Fungal contamination of dairy products is a serious threat to the public health of society. Therefore, identifying medicinal plants with antifungal activity can be an effective step in preventing fungal contamination and increasing the shelf life of these products.

Conclusion: The results of this research have shown that the Allium jesdianum plant can inhibit the growth of Aspergillus niger, Penicillium notatum, and Penicillium chrysogenum.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Recent patents on biotechnology
Recent patents on biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
2.90
自引率
0.00%
发文量
51
期刊介绍: Recent Patents on Biotechnology publishes review articles by experts on recent patents on biotechnology. A selection of important and recent patents on biotechnology is also included in the journal. The journal is essential reading for all researchers involved in all fields of biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信