Decoding skin cancer classification: perspectives, insights, and advances through researchers' lens.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Amartya Ray, Sujan Sarkar, Friedhelm Schwenker, Ram Sarkar
{"title":"Decoding skin cancer classification: perspectives, insights, and advances through researchers' lens.","authors":"Amartya Ray, Sujan Sarkar, Friedhelm Schwenker, Ram Sarkar","doi":"10.1038/s41598-024-81961-3","DOIUrl":null,"url":null,"abstract":"<p><p>Skin cancer is a significant global health concern, with timely and accurate diagnosis playing a critical role in improving patient outcomes. In recent years, computer-aided diagnosis systems have emerged as powerful tools for automated skin cancer classification, revolutionizing the field of dermatology. This survey analyzes 107 research papers published over the last 18 years, providing a thorough evaluation of advancements in classification techniques, with a focus on the growing integration of computer vision and artificial intelligence (AI) in enhancing diagnostic accuracy and reliability. The paper begins by presenting an overview of the fundamental concepts of skin cancer, addressing underlying challenges in accurate classification, and highlighting the limitations of traditional diagnostic methods. Extensive examination is devoted to a range of datasets, including the HAM10000 and the ISIC archive, among others, commonly employed by researchers. The exploration then delves into machine learning techniques coupled with handcrafted features, emphasizing their inherent limitations. Subsequent sections provide a comprehensive investigation into deep learning-based approaches, encompassing convolutional neural networks, transfer learning, attention mechanisms, ensemble techniques, generative adversarial networks, vision transformers, and segmentation-guided classification strategies, detailing various architectures, tailored for skin lesion analysis. The survey also sheds light on the various hybrid and multimodal techniques employed for classification. By critically analyzing each approach and highlighting its limitations, this survey provides researchers with valuable insights into the latest advancements, trends, and gaps in skin cancer classification. Moreover, it offers clinicians practical knowledge on the integration of AI tools to enhance diagnostic decision-making processes. This comprehensive analysis aims to bridge the gap between research and clinical practice, serving as a guide for the AI community to further advance the state-of-the-art in skin cancer classification systems.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30542"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-81961-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Skin cancer is a significant global health concern, with timely and accurate diagnosis playing a critical role in improving patient outcomes. In recent years, computer-aided diagnosis systems have emerged as powerful tools for automated skin cancer classification, revolutionizing the field of dermatology. This survey analyzes 107 research papers published over the last 18 years, providing a thorough evaluation of advancements in classification techniques, with a focus on the growing integration of computer vision and artificial intelligence (AI) in enhancing diagnostic accuracy and reliability. The paper begins by presenting an overview of the fundamental concepts of skin cancer, addressing underlying challenges in accurate classification, and highlighting the limitations of traditional diagnostic methods. Extensive examination is devoted to a range of datasets, including the HAM10000 and the ISIC archive, among others, commonly employed by researchers. The exploration then delves into machine learning techniques coupled with handcrafted features, emphasizing their inherent limitations. Subsequent sections provide a comprehensive investigation into deep learning-based approaches, encompassing convolutional neural networks, transfer learning, attention mechanisms, ensemble techniques, generative adversarial networks, vision transformers, and segmentation-guided classification strategies, detailing various architectures, tailored for skin lesion analysis. The survey also sheds light on the various hybrid and multimodal techniques employed for classification. By critically analyzing each approach and highlighting its limitations, this survey provides researchers with valuable insights into the latest advancements, trends, and gaps in skin cancer classification. Moreover, it offers clinicians practical knowledge on the integration of AI tools to enhance diagnostic decision-making processes. This comprehensive analysis aims to bridge the gap between research and clinical practice, serving as a guide for the AI community to further advance the state-of-the-art in skin cancer classification systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信