{"title":"A global product of 150-m urban building height based on spaceborne lidar.","authors":"Xiao Ma, Guang Zheng, Chi Xu, L Monika Moskal, Peng Gong, Qinghua Guo, Huabing Huang, Xuecao Li, Xinlian Liang, Yong Pang, Cheng Wang, Huan Xie, Bailang Yu, Bo Zhao, Yuyu Zhou","doi":"10.1038/s41597-024-04237-5","DOIUrl":null,"url":null,"abstract":"<p><p>Urban building height, as a fundamental 3D urban structural feature, has far-reaching applications. However, creating readily available datasets of recent urban building heights with fine spatial resolutions and global coverage remains a challenging task. Here, we provide a 150-m global urban building heights dataset around 2020 by combining the spaceborne lidar (Global Ecosystem Dynamics Investigation, GEDI), multi-sourced data (Landsat-8, Sentinel-2, and Sentinel-1), and topographic data. The validation results revealed that the GEDI-estimated building height samples were effective compared to the reference data (Pearson's r = 0.81, RMSE = 3.58 m). The mapping product also demonstrated good performance, as indicated by its strong correlation with the reference data (Pearson's r = 0.71, RMSE = 4.73 m). Compared with the currently existing datasets, it holds the ability to provide a spatial resolution (150 m) with a great level of inherent details about the spatial heterogeneity and flexibility of updating using the GEDI samples as inputs. This product will boost future urban studies across many fields, including environmental, ecological, and social sciences.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1387"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04237-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Urban building height, as a fundamental 3D urban structural feature, has far-reaching applications. However, creating readily available datasets of recent urban building heights with fine spatial resolutions and global coverage remains a challenging task. Here, we provide a 150-m global urban building heights dataset around 2020 by combining the spaceborne lidar (Global Ecosystem Dynamics Investigation, GEDI), multi-sourced data (Landsat-8, Sentinel-2, and Sentinel-1), and topographic data. The validation results revealed that the GEDI-estimated building height samples were effective compared to the reference data (Pearson's r = 0.81, RMSE = 3.58 m). The mapping product also demonstrated good performance, as indicated by its strong correlation with the reference data (Pearson's r = 0.71, RMSE = 4.73 m). Compared with the currently existing datasets, it holds the ability to provide a spatial resolution (150 m) with a great level of inherent details about the spatial heterogeneity and flexibility of updating using the GEDI samples as inputs. This product will boost future urban studies across many fields, including environmental, ecological, and social sciences.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.