A global product of 150-m urban building height based on spaceborne lidar.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiao Ma, Guang Zheng, Chi Xu, L Monika Moskal, Peng Gong, Qinghua Guo, Huabing Huang, Xuecao Li, Xinlian Liang, Yong Pang, Cheng Wang, Huan Xie, Bailang Yu, Bo Zhao, Yuyu Zhou
{"title":"A global product of 150-m urban building height based on spaceborne lidar.","authors":"Xiao Ma, Guang Zheng, Chi Xu, L Monika Moskal, Peng Gong, Qinghua Guo, Huabing Huang, Xuecao Li, Xinlian Liang, Yong Pang, Cheng Wang, Huan Xie, Bailang Yu, Bo Zhao, Yuyu Zhou","doi":"10.1038/s41597-024-04237-5","DOIUrl":null,"url":null,"abstract":"<p><p>Urban building height, as a fundamental 3D urban structural feature, has far-reaching applications. However, creating readily available datasets of recent urban building heights with fine spatial resolutions and global coverage remains a challenging task. Here, we provide a 150-m global urban building heights dataset around 2020 by combining the spaceborne lidar (Global Ecosystem Dynamics Investigation, GEDI), multi-sourced data (Landsat-8, Sentinel-2, and Sentinel-1), and topographic data. The validation results revealed that the GEDI-estimated building height samples were effective compared to the reference data (Pearson's r = 0.81, RMSE = 3.58 m). The mapping product also demonstrated good performance, as indicated by its strong correlation with the reference data (Pearson's r = 0.71, RMSE = 4.73 m). Compared with the currently existing datasets, it holds the ability to provide a spatial resolution (150 m) with a great level of inherent details about the spatial heterogeneity and flexibility of updating using the GEDI samples as inputs. This product will boost future urban studies across many fields, including environmental, ecological, and social sciences.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1387"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04237-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Urban building height, as a fundamental 3D urban structural feature, has far-reaching applications. However, creating readily available datasets of recent urban building heights with fine spatial resolutions and global coverage remains a challenging task. Here, we provide a 150-m global urban building heights dataset around 2020 by combining the spaceborne lidar (Global Ecosystem Dynamics Investigation, GEDI), multi-sourced data (Landsat-8, Sentinel-2, and Sentinel-1), and topographic data. The validation results revealed that the GEDI-estimated building height samples were effective compared to the reference data (Pearson's r = 0.81, RMSE = 3.58 m). The mapping product also demonstrated good performance, as indicated by its strong correlation with the reference data (Pearson's r = 0.71, RMSE = 4.73 m). Compared with the currently existing datasets, it holds the ability to provide a spatial resolution (150 m) with a great level of inherent details about the spatial heterogeneity and flexibility of updating using the GEDI samples as inputs. This product will boost future urban studies across many fields, including environmental, ecological, and social sciences.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信