Hands-on training about data clustering with orange data mining toolbox.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
PLoS Computational Biology Pub Date : 2024-12-18 eCollection Date: 2024-12-01 DOI:10.1371/journal.pcbi.1012574
Janez Demšar, Blaž Zupan
{"title":"Hands-on training about data clustering with orange data mining toolbox.","authors":"Janez Demšar, Blaž Zupan","doi":"10.1371/journal.pcbi.1012574","DOIUrl":null,"url":null,"abstract":"<p><p>Data clustering is a core data science approach widely used and referenced in the scientific literature. Its algorithms are often intuitive and can lead to exciting, insightful results that are easy to interpret. For these reasons, data clustering techniques could be the first method encountered in data science training. This paper proposes a hands-on approach to data clustering training suitable for introductory courses. The education approach features problem-based training that starts with the data and gradually introduces various data processing and analysis methods, illustrating them through visual representations of data and models. The proposed training is suitable for a general audience, does not require a background in statistics, mathematics, or computer science, and aims to engage the audience through practical examples, an exploratory approach to data analysis with visual analysis, experimentation, and a gentle learning curve. The manuscript details the pedagogical units of the training, motivates them through the sequence of methods introduced, and proposes data sets and data analysis workflows to be explored in the class.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"20 12","pages":"e1012574"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654965/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012574","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Data clustering is a core data science approach widely used and referenced in the scientific literature. Its algorithms are often intuitive and can lead to exciting, insightful results that are easy to interpret. For these reasons, data clustering techniques could be the first method encountered in data science training. This paper proposes a hands-on approach to data clustering training suitable for introductory courses. The education approach features problem-based training that starts with the data and gradually introduces various data processing and analysis methods, illustrating them through visual representations of data and models. The proposed training is suitable for a general audience, does not require a background in statistics, mathematics, or computer science, and aims to engage the audience through practical examples, an exploratory approach to data analysis with visual analysis, experimentation, and a gentle learning curve. The manuscript details the pedagogical units of the training, motivates them through the sequence of methods introduced, and proposes data sets and data analysis workflows to be explored in the class.

使用橙色数据挖掘工具箱进行数据聚类的实践培训。
数据聚类是一种核心的数据科学方法,在科学文献中被广泛使用和引用。它的算法通常是直观的,可以导致令人兴奋的,有洞察力的结果,很容易解释。由于这些原因,数据聚类技术可能是数据科学培训中遇到的第一种方法。本文提出了一种适合入门课程的数据聚类训练的实践方法。教育方式的特点是基于问题的培训,从数据开始,逐步引入各种数据处理和分析方法,通过数据和模型的可视化表示来说明这些方法。建议的培训适合普通受众,不需要统计学,数学或计算机科学背景,旨在通过实际示例,通过可视化分析,实验和温和的学习曲线来探索数据分析的方法,吸引受众。手稿详细介绍了培训的教学单位,通过介绍的方法序列激励他们,并提出了在课堂上探索的数据集和数据分析工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信