Microfluidic chip systems for characterizing glucose-responsive insulin-secreting cells equipped with FailSafe kill-switch.

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING
Mohammad Izadifar, Mohammad Massumi, Kacey J Prentice, Tatiana Oussenko, Biao Li, Judith Elbaz, Mira Puri, Michael B Wheeler, Andras Nagy
{"title":"Microfluidic chip systems for characterizing glucose-responsive insulin-secreting cells equipped with FailSafe kill-switch.","authors":"Mohammad Izadifar, Mohammad Massumi, Kacey J Prentice, Tatiana Oussenko, Biao Li, Judith Elbaz, Mira Puri, Michael B Wheeler, Andras Nagy","doi":"10.1186/s13287-024-04059-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pluripotent cell-derived islet replacement therapy offers promise for treating Type 1 diabetes (T1D), but concerns about uncontrolled cell proliferation and tumorigenicity present significant safety challenges. To address the safety concern, this study aims to establish a proof-of-concept for a glucose-responsive, insulin-secreting cell line integrated with a built-in FailSafe kill-switch.</p><p><strong>Method: </strong>We generated β cell-induced progenitor-like cells (βiPLCs) from primary mouse pancreatic β cells through interrupted reprogramming. Then, we transcriptionally linked our FailSafe (FS) kill-switch, HSV-thymidine kinase (TK), to Cdk1 gene using a CRISPR/Cas9 knock-in strategy, resulting in a FailSafe βiPLC line, designated as FSβiPLCs. Subsequently we evaluated and confirmed the functionality of the drug-inducible kill-switch in FSβiPLCs at different ganciclovir (GCV) concentrations using our PDMS-based transcapillary microfluidic system. Finally, we assessed the functionality of FSβiPLCs by characterizing the dynamics of insulin secretion in response to changes in glucose concentration using our microfluidic perfusion glucose-stimulated insulin secretion (GSIS) assay-on- chip.</p><p><strong>Results: </strong>The βiPLCs exhibited Ins1, Pdx1 and Nkx6.1 expression, and glucose responsive insulin secretion, the essential properties of pancreatic beta cells. The βiPLCs were amenable to genome editing which allowed for the insertion of the kill-switch into the 3'UTR of Cdk1, confirmed by PCR genotyping. Our transcapillary microfluidic system confirmed the functionality of the drug-inducible kill-switch in FSβiPLCs, showing an effective cell ablation of dividing cells from a heterogeneous cell population at different ganciclovir (GCV) concentrations. The Ki67 expression assessment further confirmed that slow- or non-dividing cells in the FSβiPLC population were resistant to GCV. Our perfusion glucose-stimulated insulin secretion (GSIS) assay-on-chip revealed that the resistant non-dividing FSβiPLCs exhibited higher levels of insulin secretion and glucose responsiveness compared to their proliferating counterparts.</p><p><strong>Conclusions: </strong>This study establishes a proof-of-concept for the integration of a FailSafe kill-switch system into a glucose-responsive, insulin-secreting cell line to address the safety concerns in stem cell-derived cell replacement treatment for T1D. The microfluidic systems provided valuable insights into the functionality and safety of these engineered cells, demonstrating the potential of the kill-switch to reduce the risk of tumorigenicity in pluripotent cell-derived insulin-secreting cells.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"486"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656860/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-024-04059-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pluripotent cell-derived islet replacement therapy offers promise for treating Type 1 diabetes (T1D), but concerns about uncontrolled cell proliferation and tumorigenicity present significant safety challenges. To address the safety concern, this study aims to establish a proof-of-concept for a glucose-responsive, insulin-secreting cell line integrated with a built-in FailSafe kill-switch.

Method: We generated β cell-induced progenitor-like cells (βiPLCs) from primary mouse pancreatic β cells through interrupted reprogramming. Then, we transcriptionally linked our FailSafe (FS) kill-switch, HSV-thymidine kinase (TK), to Cdk1 gene using a CRISPR/Cas9 knock-in strategy, resulting in a FailSafe βiPLC line, designated as FSβiPLCs. Subsequently we evaluated and confirmed the functionality of the drug-inducible kill-switch in FSβiPLCs at different ganciclovir (GCV) concentrations using our PDMS-based transcapillary microfluidic system. Finally, we assessed the functionality of FSβiPLCs by characterizing the dynamics of insulin secretion in response to changes in glucose concentration using our microfluidic perfusion glucose-stimulated insulin secretion (GSIS) assay-on- chip.

Results: The βiPLCs exhibited Ins1, Pdx1 and Nkx6.1 expression, and glucose responsive insulin secretion, the essential properties of pancreatic beta cells. The βiPLCs were amenable to genome editing which allowed for the insertion of the kill-switch into the 3'UTR of Cdk1, confirmed by PCR genotyping. Our transcapillary microfluidic system confirmed the functionality of the drug-inducible kill-switch in FSβiPLCs, showing an effective cell ablation of dividing cells from a heterogeneous cell population at different ganciclovir (GCV) concentrations. The Ki67 expression assessment further confirmed that slow- or non-dividing cells in the FSβiPLC population were resistant to GCV. Our perfusion glucose-stimulated insulin secretion (GSIS) assay-on-chip revealed that the resistant non-dividing FSβiPLCs exhibited higher levels of insulin secretion and glucose responsiveness compared to their proliferating counterparts.

Conclusions: This study establishes a proof-of-concept for the integration of a FailSafe kill-switch system into a glucose-responsive, insulin-secreting cell line to address the safety concerns in stem cell-derived cell replacement treatment for T1D. The microfluidic systems provided valuable insights into the functionality and safety of these engineered cells, demonstrating the potential of the kill-switch to reduce the risk of tumorigenicity in pluripotent cell-derived insulin-secreting cells.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信