{"title":"Prediction and mapping of leaf water content in Populus alba var. pyramidalis using hyperspectral imagery.","authors":"Zhao-Kui Li, Hong-Li Li, Xue-Wei Gong, Heng-Fang Wang, Guang-You Hao","doi":"10.1186/s13007-024-01312-1","DOIUrl":null,"url":null,"abstract":"<p><p>Leaf water content (LWC) encapsulates critical aspects of tree physiology and is considered a proxy for assessing tree drought stress and the risk of forest decline; however, its measurement relies on destructive sampling and is thus less efficient. Advancements in hyperspectral imaging technology present new prospects for noninvasively evaluating LWC and mapping drought severity across forested regions. In this study, leaf samples were obtained from Populus alba var. pyramidalis, a species widely employed for constructing farmland shelterbelts in water-limited regions of northern China but notably susceptible to drought. These samples were dehydrated to varying degrees to generate concurrent LWC measurements and hyperspectral images, enabling the development of narrow-band and multivariate spectral prediction models for LWC estimation. Two visible-spectrum narrow-band indices identified, the single-band index (R<sub>627</sub>) and the band subtraction index (R<sub>437</sub> - R<sub>444</sub>), demonstrated a strong correlation with LWC. Despite certain influences of variable preprocessing and selection on multivariate model performance, most models exhibited robust predictive accuracy for LWC. The FDRL-UVE-PLSR combination emerged as the optimal multivariate model, with R<sup>2</sup> values reaching 0.9925 and 0.9853 and RMSE values below 0.0124 and 0.0264 for the calibration and validation datasets, respectively. Using this optimal model, along with localized spectral smoothing, moisture distribution across leaf surfaces was visualized, revealing lower water retention at the leaf margins compared to central regions. These methodologies provide critical insights into subtle water-associated physiological processes at the leaf scale and facilitate high-frequency, large-scale assessments and monitoring of drought stress levels and the risk of drought-induced tree mortality and forest degradation in drylands.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"184"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01312-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Leaf water content (LWC) encapsulates critical aspects of tree physiology and is considered a proxy for assessing tree drought stress and the risk of forest decline; however, its measurement relies on destructive sampling and is thus less efficient. Advancements in hyperspectral imaging technology present new prospects for noninvasively evaluating LWC and mapping drought severity across forested regions. In this study, leaf samples were obtained from Populus alba var. pyramidalis, a species widely employed for constructing farmland shelterbelts in water-limited regions of northern China but notably susceptible to drought. These samples were dehydrated to varying degrees to generate concurrent LWC measurements and hyperspectral images, enabling the development of narrow-band and multivariate spectral prediction models for LWC estimation. Two visible-spectrum narrow-band indices identified, the single-band index (R627) and the band subtraction index (R437 - R444), demonstrated a strong correlation with LWC. Despite certain influences of variable preprocessing and selection on multivariate model performance, most models exhibited robust predictive accuracy for LWC. The FDRL-UVE-PLSR combination emerged as the optimal multivariate model, with R2 values reaching 0.9925 and 0.9853 and RMSE values below 0.0124 and 0.0264 for the calibration and validation datasets, respectively. Using this optimal model, along with localized spectral smoothing, moisture distribution across leaf surfaces was visualized, revealing lower water retention at the leaf margins compared to central regions. These methodologies provide critical insights into subtle water-associated physiological processes at the leaf scale and facilitate high-frequency, large-scale assessments and monitoring of drought stress levels and the risk of drought-induced tree mortality and forest degradation in drylands.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.