Road side unit deployment optimization for the reliability of internet of vehicles based on information transmission model.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2024-12-18 eCollection Date: 2024-01-01 DOI:10.1371/journal.pone.0315716
Jun Zhang, Guangtong Hu
{"title":"Road side unit deployment optimization for the reliability of internet of vehicles based on information transmission model.","authors":"Jun Zhang, Guangtong Hu","doi":"10.1371/journal.pone.0315716","DOIUrl":null,"url":null,"abstract":"<p><p>The Internet of Vehicles (IoV) makes it possible to transmit information in real time between vehicles, providing a modern approach for autonomous driving, traffic safety, and other applications. Roadside units (RSUs) contribute to the enhancement of IoV's reliability and transmission efficiency, while mitigating the impact of low IoV penetration. The objective of RSU deployment optimization is to minimize the total cost with the premise of ensuring IoV reliability. We construct a distance-based reliability measure for IoV, which is expressed as the proportion of information transmitted in online mode to the total transmission distance. The distance distribution of the online and offline transmissions is computed using the information transmission model. A bi-objective optimization model is established with the objectives of minimizing the cost of RSU and maximizing the reliability of IoV. Meanwhile, based on variable probabilities of crossover and mutation, a nondomination level-based NSGA-II (NNSGA-II) is designed to improve the solving efficiency. Numerical results show the advantage of the proposed model over the models evaluated with the objective of reducing transmission time can be up to 18% in different traffic scenarios, and NNSGA-II is significantly more computationally efficient.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 12","pages":"e0315716"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0315716","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Vehicles (IoV) makes it possible to transmit information in real time between vehicles, providing a modern approach for autonomous driving, traffic safety, and other applications. Roadside units (RSUs) contribute to the enhancement of IoV's reliability and transmission efficiency, while mitigating the impact of low IoV penetration. The objective of RSU deployment optimization is to minimize the total cost with the premise of ensuring IoV reliability. We construct a distance-based reliability measure for IoV, which is expressed as the proportion of information transmitted in online mode to the total transmission distance. The distance distribution of the online and offline transmissions is computed using the information transmission model. A bi-objective optimization model is established with the objectives of minimizing the cost of RSU and maximizing the reliability of IoV. Meanwhile, based on variable probabilities of crossover and mutation, a nondomination level-based NSGA-II (NNSGA-II) is designed to improve the solving efficiency. Numerical results show the advantage of the proposed model over the models evaluated with the objective of reducing transmission time can be up to 18% in different traffic scenarios, and NNSGA-II is significantly more computationally efficient.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信