Alma Fernández González, Ze Tian Fang, Dipankar Sen, Brian Henrich, Yukihiro Nagashima, Alexei V Sokolov, Sakiko Okumoto, Aart J Verhoef
{"title":"In-vivo Raman microspectroscopy reveals differential nitrate concentration in different developmental zones in Arabidopsis roots.","authors":"Alma Fernández González, Ze Tian Fang, Dipankar Sen, Brian Henrich, Yukihiro Nagashima, Alexei V Sokolov, Sakiko Okumoto, Aart J Verhoef","doi":"10.1186/s13007-024-01302-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nitrate (NO<sub>3</sub><sup>-</sup>) is one of the two major forms of inorganic nitrogen absorbed by plant roots, and the tissue nitrate concentration in roots is considered important for optimizing developmental programs. Technologies to quantify the expression levels of nitrate transporters and assimilating enzymes at the cellular level have improved drastically in the past decade. However, a technological gap remains for detecting nitrate at a high spatial resolution. Using extraction-based methods, it is challenging to reliably estimate nitrate concentration from a small volume of cells (i.e., with high spatial resolution), since targeting a small or specific group of cells is physically difficult. Alternatively, nitrate detection with microelectrodes offers subcellular resolution with high cell specificity, but this method has some limitations on cell accessibility and detection speed. Finally, optical nitrate biosensors have very good (in-vivo) sensitivity (below 1 mM) and cellular-level spatial resolution, but require plant transformation, limiting their applicability. In this work, we apply Raman microspectroscopy for high-dynamic range in-vivo mapping of nitrate in different developmental zones of Arabidopsis thaliana roots in-situ.</p><p><strong>Results: </strong>As a proof of concept, we have used Raman microspectroscopy for in-vivo mapping of nitrate content in roots of Arabidopsis seedlings grown on agar media with different nitrate concentrations. Our results revealed that the root nitrate concentration increases gradually from the meristematic zone (~ 250 µm from the root cap) to the maturation zone (~ 3 mm from the root cap) in roots grown under typical growth conditions used for Arabidopsis, a trend that has not been previously reported. This trend was observed for plants grown in agar media with different nitrate concentrations (0.5-10 mM). These results were validated through destructive measurement of nitrate concentration.</p><p><strong>Conclusions: </strong>We present a methodology based on Raman microspectroscopy for in-vivo label-free mapping of nitrate within small root tissue volumes in Arabidopsis. Measurements are done in-situ without additional sample preparation. Our measurements revealed nitrate concentration changes from lower to higher concentration from tip to mature root tissue. Accumulation of nitrate in the maturation zone tissue shows a saturation behavior. The presented Raman-based approach allows for in-situ non-destructive measurements of Raman-active compounds.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"185"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01302-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Nitrate (NO3-) is one of the two major forms of inorganic nitrogen absorbed by plant roots, and the tissue nitrate concentration in roots is considered important for optimizing developmental programs. Technologies to quantify the expression levels of nitrate transporters and assimilating enzymes at the cellular level have improved drastically in the past decade. However, a technological gap remains for detecting nitrate at a high spatial resolution. Using extraction-based methods, it is challenging to reliably estimate nitrate concentration from a small volume of cells (i.e., with high spatial resolution), since targeting a small or specific group of cells is physically difficult. Alternatively, nitrate detection with microelectrodes offers subcellular resolution with high cell specificity, but this method has some limitations on cell accessibility and detection speed. Finally, optical nitrate biosensors have very good (in-vivo) sensitivity (below 1 mM) and cellular-level spatial resolution, but require plant transformation, limiting their applicability. In this work, we apply Raman microspectroscopy for high-dynamic range in-vivo mapping of nitrate in different developmental zones of Arabidopsis thaliana roots in-situ.
Results: As a proof of concept, we have used Raman microspectroscopy for in-vivo mapping of nitrate content in roots of Arabidopsis seedlings grown on agar media with different nitrate concentrations. Our results revealed that the root nitrate concentration increases gradually from the meristematic zone (~ 250 µm from the root cap) to the maturation zone (~ 3 mm from the root cap) in roots grown under typical growth conditions used for Arabidopsis, a trend that has not been previously reported. This trend was observed for plants grown in agar media with different nitrate concentrations (0.5-10 mM). These results were validated through destructive measurement of nitrate concentration.
Conclusions: We present a methodology based on Raman microspectroscopy for in-vivo label-free mapping of nitrate within small root tissue volumes in Arabidopsis. Measurements are done in-situ without additional sample preparation. Our measurements revealed nitrate concentration changes from lower to higher concentration from tip to mature root tissue. Accumulation of nitrate in the maturation zone tissue shows a saturation behavior. The presented Raman-based approach allows for in-situ non-destructive measurements of Raman-active compounds.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.