Enhancing vector control: AI-based identification and counting of Aedes albopictus (Diptera: Culicidae) mosquito eggs.

IF 3 2区 医学 Q1 PARASITOLOGY
Minghao Wang, Yibin Zhou, Shenjun Yao, Jianping Wu, Minhui Zhu, Linjuan Dong, Dunjia Wang
{"title":"Enhancing vector control: AI-based identification and counting of Aedes albopictus (Diptera: Culicidae) mosquito eggs.","authors":"Minghao Wang, Yibin Zhou, Shenjun Yao, Jianping Wu, Minhui Zhu, Linjuan Dong, Dunjia Wang","doi":"10.1186/s13071-024-06587-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dengue fever poses a significant global public health concern, necessitating the monitoring of Aedes mosquito population density. These mosquitoes serve as the disease vectors, making their surveillance crucial for dengue prevention. The objective of this study was to address the difficulty associated with identifying and counting mosquito eggs of wild strains during the monitoring of Aedes albopictus (Diptera: Culicidae) density via ovitraps in field surveys.</p><p><strong>Methods: </strong>We constructed a dataset comprising 1729 images of Ae. albopictus mosquito eggs from wild strains and employed the Segment Anything Model to enhance the applicability of the detection model in complex environments. A two-stage Faster Region-based Convolutional Neural Network model was used to establish a detection model for Ae. albopictus mosquito eggs. The identification and counting process involved applying the tile overlapping method, while morphological filtering was employed to remove impurities. The model's performance was evaluated in terms of precision, recall, and F1 score, and counting accuracy was assessed using R-squared and root mean square error (RMSE).</p><p><strong>Results: </strong>The experimental results revealed the model's remarkable identification capabilities, achieving precision of 0.977, recall of 0.978, and an F1 score of 0.977. The R-squared value between the actual and identified egg counts was 0.997, with an RMSE of 1.742. The average detection time for a single tile was 0.48 s, which was more than 10 times as fast as the human-computer interaction method in counting an entire image.</p><p><strong>Conclusions: </strong>The model demonstrated excellent performance in recognizing and counting Ae. albopictus mosquito eggs, indicating great application potential. This study offers novel technological support for enhancing vector control effectiveness and public health standards.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"17 1","pages":"511"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656830/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-024-06587-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Dengue fever poses a significant global public health concern, necessitating the monitoring of Aedes mosquito population density. These mosquitoes serve as the disease vectors, making their surveillance crucial for dengue prevention. The objective of this study was to address the difficulty associated with identifying and counting mosquito eggs of wild strains during the monitoring of Aedes albopictus (Diptera: Culicidae) density via ovitraps in field surveys.

Methods: We constructed a dataset comprising 1729 images of Ae. albopictus mosquito eggs from wild strains and employed the Segment Anything Model to enhance the applicability of the detection model in complex environments. A two-stage Faster Region-based Convolutional Neural Network model was used to establish a detection model for Ae. albopictus mosquito eggs. The identification and counting process involved applying the tile overlapping method, while morphological filtering was employed to remove impurities. The model's performance was evaluated in terms of precision, recall, and F1 score, and counting accuracy was assessed using R-squared and root mean square error (RMSE).

Results: The experimental results revealed the model's remarkable identification capabilities, achieving precision of 0.977, recall of 0.978, and an F1 score of 0.977. The R-squared value between the actual and identified egg counts was 0.997, with an RMSE of 1.742. The average detection time for a single tile was 0.48 s, which was more than 10 times as fast as the human-computer interaction method in counting an entire image.

Conclusions: The model demonstrated excellent performance in recognizing and counting Ae. albopictus mosquito eggs, indicating great application potential. This study offers novel technological support for enhancing vector control effectiveness and public health standards.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Parasites & Vectors
Parasites & Vectors 医学-寄生虫学
CiteScore
6.30
自引率
9.40%
发文量
433
审稿时长
1.4 months
期刊介绍: Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish. Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信