{"title":"Abnormal transition from meiosis I to meiosis II induces male sterility in a seedless artificial hybrid of citrus.","authors":"Zhixiong Rao, Ruotian Sun, Shengjun Liu, Wanqi Ai, Lizhi Song, Xia Wang, Qiang Xu","doi":"10.1007/s11032-024-01521-5","DOIUrl":null,"url":null,"abstract":"<p><p>Male sterility is an important trait for breeding and for the seedless fruit production in citrus. We identified one seedling which exhibiting male sterility and seedlessness (named <i>ms1</i> hereafter), from a cross between two fertile parents, with sour orange (<i>Citrus aurantium</i>) as seed parent and Ponkan mandarin (<i>Citrus reticulata</i>) as pollen parent. Analysis using pollen viability staining, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) revealed that the mature pollen of the <i>ms1</i> was aborted, displaying collapse and deformity. Further cytological analysis identified the abnormal formation of monad, dyad, and tetrad instead of the normal tetrad formation, leading to meiotic failure in the seedless hybrid. By comparative transcript profiling of meiotic anther of fertile and sterile hybrids, we observed significant downregulation of <i>CYCA1;2</i> (<i>TAM</i>) and <i>OSD1</i> genes in the hybrid, which known to control the transition from meiosis I to meiosis II in plants. These results indicated abnormal meiosis led to the male sterility of the seedless hybrid and that the decreased activities of kinases and cyclins may associated with the failure of the transition of meiosis I to meiosis II during anthers development.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-024-01521-5.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 1","pages":"1"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649890/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-024-01521-5","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Male sterility is an important trait for breeding and for the seedless fruit production in citrus. We identified one seedling which exhibiting male sterility and seedlessness (named ms1 hereafter), from a cross between two fertile parents, with sour orange (Citrus aurantium) as seed parent and Ponkan mandarin (Citrus reticulata) as pollen parent. Analysis using pollen viability staining, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) revealed that the mature pollen of the ms1 was aborted, displaying collapse and deformity. Further cytological analysis identified the abnormal formation of monad, dyad, and tetrad instead of the normal tetrad formation, leading to meiotic failure in the seedless hybrid. By comparative transcript profiling of meiotic anther of fertile and sterile hybrids, we observed significant downregulation of CYCA1;2 (TAM) and OSD1 genes in the hybrid, which known to control the transition from meiosis I to meiosis II in plants. These results indicated abnormal meiosis led to the male sterility of the seedless hybrid and that the decreased activities of kinases and cyclins may associated with the failure of the transition of meiosis I to meiosis II during anthers development.
Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01521-5.
期刊介绍:
Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer.
All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others.
Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards.
Molecular Breeding core areas:
Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.