Dongju An, Jihyun Kim, Byul Moon, Hyoungmin Kim, Hoa Nguyen, Sunghu Park, J Eugene Lee, Jung-Ae Kim, Jaehoon Kim
{"title":"PRMT1-mediated methylation regulates MLL2 stability and gene expression.","authors":"Dongju An, Jihyun Kim, Byul Moon, Hyoungmin Kim, Hoa Nguyen, Sunghu Park, J Eugene Lee, Jung-Ae Kim, Jaehoon Kim","doi":"10.1093/nar/gkae1227","DOIUrl":null,"url":null,"abstract":"<p><p>The interplay between multiple transcription factors precisely regulates eukaryotic transcription. Here, we report that the protein methyltransferases, MLL2/KMT2B and PRMT1, interact directly and act collectively to regulate gene expression. PRMT1 binds to the N-terminal region of MLL2, considered an intrinsically disordered region, and methylates multiple arginine residues within its RGG/RG motifs. Notably, overexpression of PRMT1 decreased poly-ubiquitylation of MLL2, whereas mutations on methylation sites in MLL2 increased MLL2 poly-ubiquitylation, suggesting that PRMT1-mediated methylation stabilizes MLL2. MLL2 and PRMT1 cooperatively stimulated the expression of a chromosomal reporter gene in a PRMT1-mediated, MLL2-methylation-dependent manner. RNA-seq analysis found that MLL2 and PRMT1 jointly regulate the expression of genes involved in cell membrane and extracellular matrix functions, and depletion of either resulted in impaired cell migration and invasion. Our study provides evidence that PRMT1-mediated MLL2 methylation regulates MLL2 protein stability and the expression of their target genes.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":" ","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1227","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The interplay between multiple transcription factors precisely regulates eukaryotic transcription. Here, we report that the protein methyltransferases, MLL2/KMT2B and PRMT1, interact directly and act collectively to regulate gene expression. PRMT1 binds to the N-terminal region of MLL2, considered an intrinsically disordered region, and methylates multiple arginine residues within its RGG/RG motifs. Notably, overexpression of PRMT1 decreased poly-ubiquitylation of MLL2, whereas mutations on methylation sites in MLL2 increased MLL2 poly-ubiquitylation, suggesting that PRMT1-mediated methylation stabilizes MLL2. MLL2 and PRMT1 cooperatively stimulated the expression of a chromosomal reporter gene in a PRMT1-mediated, MLL2-methylation-dependent manner. RNA-seq analysis found that MLL2 and PRMT1 jointly regulate the expression of genes involved in cell membrane and extracellular matrix functions, and depletion of either resulted in impaired cell migration and invasion. Our study provides evidence that PRMT1-mediated MLL2 methylation regulates MLL2 protein stability and the expression of their target genes.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.