Shaogang He, Shiyi Zheng, Honglin Zhu, Yuanke Hu, Bin Yu, Junhong Wei, Guoqing Pan, Zeyang Zhou, Chunfeng Li
{"title":"A novel ATP-binding cassette protein (NoboABCG1.3) plays a role in the proliferation of Nosema bombycis.","authors":"Shaogang He, Shiyi Zheng, Honglin Zhu, Yuanke Hu, Bin Yu, Junhong Wei, Guoqing Pan, Zeyang Zhou, Chunfeng Li","doi":"10.1007/s00436-024-08440-6","DOIUrl":null,"url":null,"abstract":"<p><p>ATP-binding cassette (ABC) transporter proteins, one of the largest families of membrane transport proteins, participate in almost all biological processes and widely exist in living organisms. Microsporidia are intracellular parasites; they can reduce crop yields and pose a threat to human health. The ABC proteins are also present in microsporidia and play a critical role in their proliferation and energy transport. In this study, a novel ABC transporter protein of Nosema bombycis named NoboABCG1.3 was identified. The NoboABCG1.3 protein is comprised of 640 amino acids, which contain six transmembrane domains and one nucleotide-binding domain. After N. bombycis infection of cells or tissues, quantitative reverse transcription polymerase chain reaction analysis revealed a progressive elevation in the transcript levels of NoboABCG1.3. Downregulation of NoboABCG1.3 expression significantly inhibited N. bombycis proliferation. Subsequently, a transgenic cell line stably expressing an interfering fragment of NoboABCG1.3 was established, which exhibited extreme inhibition on the proliferation of N. bombycis. These findings indicate that NoboABCG1.3 plays a role in the proliferation of N. bombycis and holds promise as a target for developing N. bombycis-resistant silkworms.</p>","PeriodicalId":19968,"journal":{"name":"Parasitology Research","volume":"123 12","pages":"413"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasitology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00436-024-08440-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ATP-binding cassette (ABC) transporter proteins, one of the largest families of membrane transport proteins, participate in almost all biological processes and widely exist in living organisms. Microsporidia are intracellular parasites; they can reduce crop yields and pose a threat to human health. The ABC proteins are also present in microsporidia and play a critical role in their proliferation and energy transport. In this study, a novel ABC transporter protein of Nosema bombycis named NoboABCG1.3 was identified. The NoboABCG1.3 protein is comprised of 640 amino acids, which contain six transmembrane domains and one nucleotide-binding domain. After N. bombycis infection of cells or tissues, quantitative reverse transcription polymerase chain reaction analysis revealed a progressive elevation in the transcript levels of NoboABCG1.3. Downregulation of NoboABCG1.3 expression significantly inhibited N. bombycis proliferation. Subsequently, a transgenic cell line stably expressing an interfering fragment of NoboABCG1.3 was established, which exhibited extreme inhibition on the proliferation of N. bombycis. These findings indicate that NoboABCG1.3 plays a role in the proliferation of N. bombycis and holds promise as a target for developing N. bombycis-resistant silkworms.
期刊介绍:
The journal Parasitology Research covers the latest developments in parasitology across a variety of disciplines, including biology, medicine and veterinary medicine. Among many topics discussed are chemotherapy and control of parasitic disease, and the relationship of host and parasite.
Other coverage includes: Protozoology, Helminthology, Entomology; Morphology (incl. Pathomorphology, Ultrastructure); Biochemistry, Physiology including Pathophysiology;
Parasite-Host-Relationships including Immunology and Host Specificity; life history, ecology and epidemiology; and Diagnosis, Chemotherapy and Control of Parasitic Diseases.