María I González Pérez, Bastian Faulhaber, Mark Williams, Joao Encarnaçao, Pancraç Villalonga, Carles Aranda, Núria Busquets
{"title":"Automated age grading of female Culex pipiens by an optical sensor system coupled to a mosquito trap.","authors":"María I González Pérez, Bastian Faulhaber, Mark Williams, Joao Encarnaçao, Pancraç Villalonga, Carles Aranda, Núria Busquets","doi":"10.1186/s13071-024-06606-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The age distribution of a mosquito population is a major determinant of its vectorial capacity. To contribute to disease transmission, a competent mosquito vector, carrying a pathogen, must live longer than the extrinsic incubation period of that pathogen to enable transmission to a new host. As such, determining the age of female mosquitoes is of significant interest for vector-borne diseases surveillance and control programs.</p><p><strong>Methods: </strong>In this contribution, an automated age-grading system was developed to classify the age of female Culex pipiens, which is the primary vector of West Nile virus and other pathogens of medical and veterinary importance in northern latitudes. The system comprises an optical wingbeat sensor coupled to the entrance of a mosquito trap and a machine learning model. Three age classes were used in the study: young (2-4 days), middle (7-9 days) and old (14-16 days). From a balanced dataset of flight data, four features were extracted: wingbeat fundamental frequency, spectrogram, power spectral density and Mel frequency cepstral coefficients. The features were used for training with the XGBoost algorithm to generate a model for age classification.</p><p><strong>Results: </strong>The best performing model was trained with the power spectral density feature on two age classes, ≤ 4 days old and ≥ 7 days old, and had an accuracy of 71.8%.</p><p><strong>Conclusions: </strong>An automated mosquito age-grading system was applied for the first time to our knowledge for automated age classification in mosquitoes; and complements the mosquito genus and sex classification capability of the system reported in our previous work. The system may find use in mosquito-borne disease surveillance and control to help to discriminate young mosquitoes (≤ 4 days old) from older mosquitoes, which may act as vectors of arboviruses.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"17 1","pages":"510"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656798/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-024-06606-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The age distribution of a mosquito population is a major determinant of its vectorial capacity. To contribute to disease transmission, a competent mosquito vector, carrying a pathogen, must live longer than the extrinsic incubation period of that pathogen to enable transmission to a new host. As such, determining the age of female mosquitoes is of significant interest for vector-borne diseases surveillance and control programs.
Methods: In this contribution, an automated age-grading system was developed to classify the age of female Culex pipiens, which is the primary vector of West Nile virus and other pathogens of medical and veterinary importance in northern latitudes. The system comprises an optical wingbeat sensor coupled to the entrance of a mosquito trap and a machine learning model. Three age classes were used in the study: young (2-4 days), middle (7-9 days) and old (14-16 days). From a balanced dataset of flight data, four features were extracted: wingbeat fundamental frequency, spectrogram, power spectral density and Mel frequency cepstral coefficients. The features were used for training with the XGBoost algorithm to generate a model for age classification.
Results: The best performing model was trained with the power spectral density feature on two age classes, ≤ 4 days old and ≥ 7 days old, and had an accuracy of 71.8%.
Conclusions: An automated mosquito age-grading system was applied for the first time to our knowledge for automated age classification in mosquitoes; and complements the mosquito genus and sex classification capability of the system reported in our previous work. The system may find use in mosquito-borne disease surveillance and control to help to discriminate young mosquitoes (≤ 4 days old) from older mosquitoes, which may act as vectors of arboviruses.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.