Automated age grading of female Culex pipiens by an optical sensor system coupled to a mosquito trap.

IF 3 2区 医学 Q1 PARASITOLOGY
María I González Pérez, Bastian Faulhaber, Mark Williams, Joao Encarnaçao, Pancraç Villalonga, Carles Aranda, Núria Busquets
{"title":"Automated age grading of female Culex pipiens by an optical sensor system coupled to a mosquito trap.","authors":"María I González Pérez, Bastian Faulhaber, Mark Williams, Joao Encarnaçao, Pancraç Villalonga, Carles Aranda, Núria Busquets","doi":"10.1186/s13071-024-06606-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The age distribution of a mosquito population is a major determinant of its vectorial capacity. To contribute to disease transmission, a competent mosquito vector, carrying a pathogen, must live longer than the extrinsic incubation period of that pathogen to enable transmission to a new host. As such, determining the age of female mosquitoes is of significant interest for vector-borne diseases surveillance and control programs.</p><p><strong>Methods: </strong>In this contribution, an automated age-grading system was developed to classify the age of female Culex pipiens, which is the primary vector of West Nile virus and other pathogens of medical and veterinary importance in northern latitudes. The system comprises an optical wingbeat sensor coupled to the entrance of a mosquito trap and a machine learning model. Three age classes were used in the study: young (2-4 days), middle (7-9 days) and old (14-16 days). From a balanced dataset of flight data, four features were extracted: wingbeat fundamental frequency, spectrogram, power spectral density and Mel frequency cepstral coefficients. The features were used for training with the XGBoost algorithm to generate a model for age classification.</p><p><strong>Results: </strong>The best performing model was trained with the power spectral density feature on two age classes, ≤ 4 days old and ≥ 7 days old, and had an accuracy of 71.8%.</p><p><strong>Conclusions: </strong>An automated mosquito age-grading system was applied for the first time to our knowledge for automated age classification in mosquitoes; and complements the mosquito genus and sex classification capability of the system reported in our previous work. The system may find use in mosquito-borne disease surveillance and control to help to discriminate young mosquitoes (≤ 4 days old) from older mosquitoes, which may act as vectors of arboviruses.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"17 1","pages":"510"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656798/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-024-06606-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The age distribution of a mosquito population is a major determinant of its vectorial capacity. To contribute to disease transmission, a competent mosquito vector, carrying a pathogen, must live longer than the extrinsic incubation period of that pathogen to enable transmission to a new host. As such, determining the age of female mosquitoes is of significant interest for vector-borne diseases surveillance and control programs.

Methods: In this contribution, an automated age-grading system was developed to classify the age of female Culex pipiens, which is the primary vector of West Nile virus and other pathogens of medical and veterinary importance in northern latitudes. The system comprises an optical wingbeat sensor coupled to the entrance of a mosquito trap and a machine learning model. Three age classes were used in the study: young (2-4 days), middle (7-9 days) and old (14-16 days). From a balanced dataset of flight data, four features were extracted: wingbeat fundamental frequency, spectrogram, power spectral density and Mel frequency cepstral coefficients. The features were used for training with the XGBoost algorithm to generate a model for age classification.

Results: The best performing model was trained with the power spectral density feature on two age classes, ≤ 4 days old and ≥ 7 days old, and had an accuracy of 71.8%.

Conclusions: An automated mosquito age-grading system was applied for the first time to our knowledge for automated age classification in mosquitoes; and complements the mosquito genus and sex classification capability of the system reported in our previous work. The system may find use in mosquito-borne disease surveillance and control to help to discriminate young mosquitoes (≤ 4 days old) from older mosquitoes, which may act as vectors of arboviruses.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Parasites & Vectors
Parasites & Vectors 医学-寄生虫学
CiteScore
6.30
自引率
9.40%
发文量
433
审稿时长
1.4 months
期刊介绍: Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish. Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信