Overcoming boundary conditions for object location memory destabilization in male rats involves dopamine D1 receptor activation.

IF 2.2 4区 心理学 Q3 BEHAVIORAL SCIENCES
Olivia S O'Neill, Karley V George, Emily P Minard, Boyer D Winters
{"title":"Overcoming boundary conditions for object location memory destabilization in male rats involves dopamine D1 receptor activation.","authors":"Olivia S O'Neill, Karley V George, Emily P Minard, Boyer D Winters","doi":"10.1016/j.nlm.2024.108017","DOIUrl":null,"url":null,"abstract":"<p><p>Consolidated long-term memories can undergo strength or content modification via protein synthesis-dependent reconsolidation. This is the process by which a reminder cue initiates reactivation of the memory trace, triggering destabilization. Older and more strongly encoded spatial memories can resist destabilization due to biological boundary conditions. The present study investigated the role of dopamine (DA) at D1 receptors (D1Rs) in object location memory destabilization and overcoming boundary conditions for older (\"remote\"; tested with a 48-h rather than a 24-h delay between sample and reactivation) memory destabilization. Using male rats in a modified object location task, we found that administering the D1R antagonist SCH23390 (0.1 mg/kg, i.p.) prior to reactivation blocked destabilization of recently encoded memories, as well as novelty-induced destabilization of remote memories. Using remote parameters, systemically administered D1R agonist SKF38393 (5 mg/kg, i.p.) induced destabilization of remote object location memories in the absence of salient novelty. Intra-dorsal hippocampus administration of SCH23390 (2 μg/μL) also blocked destabilization of remote object location memories when a salient novel cue was present. These results are consistent with previous findings implicating DA in memory destabilization as well as demonstrate a role for D1-receptor activation in the destabilization of boundary condition protected-object location memories.</p>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":" ","pages":"108017"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Learning and Memory","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.nlm.2024.108017","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Consolidated long-term memories can undergo strength or content modification via protein synthesis-dependent reconsolidation. This is the process by which a reminder cue initiates reactivation of the memory trace, triggering destabilization. Older and more strongly encoded spatial memories can resist destabilization due to biological boundary conditions. The present study investigated the role of dopamine (DA) at D1 receptors (D1Rs) in object location memory destabilization and overcoming boundary conditions for older ("remote"; tested with a 48-h rather than a 24-h delay between sample and reactivation) memory destabilization. Using male rats in a modified object location task, we found that administering the D1R antagonist SCH23390 (0.1 mg/kg, i.p.) prior to reactivation blocked destabilization of recently encoded memories, as well as novelty-induced destabilization of remote memories. Using remote parameters, systemically administered D1R agonist SKF38393 (5 mg/kg, i.p.) induced destabilization of remote object location memories in the absence of salient novelty. Intra-dorsal hippocampus administration of SCH23390 (2 μg/μL) also blocked destabilization of remote object location memories when a salient novel cue was present. These results are consistent with previous findings implicating DA in memory destabilization as well as demonstrate a role for D1-receptor activation in the destabilization of boundary condition protected-object location memories.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
7.40%
发文量
77
审稿时长
12.6 weeks
期刊介绍: Neurobiology of Learning and Memory publishes articles examining the neurobiological mechanisms underlying learning and memory at all levels of analysis ranging from molecular biology to synaptic and neural plasticity and behavior. We are especially interested in manuscripts that examine the neural circuits and molecular mechanisms underlying learning, memory and plasticity in both experimental animals and human subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信