Enhanced sclerotherapy for vascular malformations: A dual-mechanism approach using in-situ forming PATDs gel.

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Materials Today Bio Pub Date : 2024-11-30 eCollection Date: 2024-12-01 DOI:10.1016/j.mtbio.2024.101376
Jizhuang Ma, Wenhan Li, Yu Ding, Yongfeng Chen, Xiaoyu Huang, Tong Yu, Di Song, Haoran Niu, Bao Li, Huichao Xie, Keda Zhang, Tianzhi Yang, Xiaoyun Zhao, Xinggang Yang, Pingtian Ding
{"title":"Enhanced sclerotherapy for vascular malformations: A dual-mechanism approach using in-situ forming PATDs gel.","authors":"Jizhuang Ma, Wenhan Li, Yu Ding, Yongfeng Chen, Xiaoyu Huang, Tong Yu, Di Song, Haoran Niu, Bao Li, Huichao Xie, Keda Zhang, Tianzhi Yang, Xiaoyun Zhao, Xinggang Yang, Pingtian Ding","doi":"10.1016/j.mtbio.2024.101376","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular malformations are common vascular lesions in infants and seriously affect their health and quality of life. Vascular sclerotherapy is an effective treatment for vascular malformations. However, current sclerosants have difficulty achieving both high efficiency and low toxicity, and their dosing forms make it difficult to achieve long-term retention in the affected blood vessels. Therefore, exploring a safe and effective sclerosant and its delivery strategy is the key to clinical sclerotherapy. To address the above issues, this study developed sclerosants that could form an in-situ gel based on a dual mechanism of vascular injury and plasmin (PLA) inhibition. By linking the non-ionic surfactant sclerosant polyoxyethylene alkyl ether (PAs) and the PLA inhibitor tranexamic acid (TA) through an ester bond, a cationic surfactant sclerosant polyoxyethylene alkylether tranexamate derivatives (PATDs) were constructed. The cationic charge of PATDs enhanced its cytotoxicity to HUVEC-TIE2-L914F cells, and the ester bond of PATDs could be degraded by esterase in the blood, reducing its systemic toxicity. The degradation product TA inhibited the activation of the PLA-matrix metalloproteinase (MMPs) system induced by vascular injury, thereby promoting the deposition of collagen and the proliferation and differentiation of fibroblasts to promote vascular fibrosis. In addition, an injectable solution (PATDs/GA) was prepared by mixing PATDs with glycerol formaldehyde (GA), and PATDs/GA could form a low-molecular-weight gel automatically in an aqueous solution, which was beneficial to increase its retention in the affected blood vessels and reduce the risk of drug entering non-targeted sites. At the same time, this gel automatically dissolved, reducing the risk of immune rejection caused by long-term retention. This study provided a new and precise approach for the treatment of vascular sclerosis with high efficiency and low toxicity.</p>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"101376"},"PeriodicalIF":8.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653148/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.mtbio.2024.101376","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Vascular malformations are common vascular lesions in infants and seriously affect their health and quality of life. Vascular sclerotherapy is an effective treatment for vascular malformations. However, current sclerosants have difficulty achieving both high efficiency and low toxicity, and their dosing forms make it difficult to achieve long-term retention in the affected blood vessels. Therefore, exploring a safe and effective sclerosant and its delivery strategy is the key to clinical sclerotherapy. To address the above issues, this study developed sclerosants that could form an in-situ gel based on a dual mechanism of vascular injury and plasmin (PLA) inhibition. By linking the non-ionic surfactant sclerosant polyoxyethylene alkyl ether (PAs) and the PLA inhibitor tranexamic acid (TA) through an ester bond, a cationic surfactant sclerosant polyoxyethylene alkylether tranexamate derivatives (PATDs) were constructed. The cationic charge of PATDs enhanced its cytotoxicity to HUVEC-TIE2-L914F cells, and the ester bond of PATDs could be degraded by esterase in the blood, reducing its systemic toxicity. The degradation product TA inhibited the activation of the PLA-matrix metalloproteinase (MMPs) system induced by vascular injury, thereby promoting the deposition of collagen and the proliferation and differentiation of fibroblasts to promote vascular fibrosis. In addition, an injectable solution (PATDs/GA) was prepared by mixing PATDs with glycerol formaldehyde (GA), and PATDs/GA could form a low-molecular-weight gel automatically in an aqueous solution, which was beneficial to increase its retention in the affected blood vessels and reduce the risk of drug entering non-targeted sites. At the same time, this gel automatically dissolved, reducing the risk of immune rejection caused by long-term retention. This study provided a new and precise approach for the treatment of vascular sclerosis with high efficiency and low toxicity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信