International society of sports nutrition position stand: β-hydroxy-β-methylbutyrate (HMB).

IF 4.5 2区 医学 Q1 NUTRITION & DIETETICS
John A Rathmacher, Lisa M Pitchford, Jeffrey R Stout, Jeremy R Townsend, Ralf Jäger, Richard B Kreider, Bill I Campbell, Chad M Kerksick, Patrick S Harty, Darren G Candow, Brandon M Roberts, Shawn M Arent, Douglas S Kalman, Jose Antonio
{"title":"International society of sports nutrition position stand: β-hydroxy-β-methylbutyrate (HMB).","authors":"John A Rathmacher, Lisa M Pitchford, Jeffrey R Stout, Jeremy R Townsend, Ralf Jäger, Richard B Kreider, Bill I Campbell, Chad M Kerksick, Patrick S Harty, Darren G Candow, Brandon M Roberts, Shawn M Arent, Douglas S Kalman, Jose Antonio","doi":"10.1080/15502783.2024.2434734","DOIUrl":null,"url":null,"abstract":"<p><p>Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on an analysis of the literature regarding the effects of β-Hydroxy-β-Methylbutyrate (HMB). The following 12 points have been approved by the Research Committee of the Society: 1. HMB is a metabolite of the amino acid leucine that is naturally produced in both humans and other animals. Two forms of HMB have been studied: Calcium HMB (HMB-Ca) and a free acid form of HMB (HMB-FA). HMB-FA appears to lead to increased appearance of HMB in the bloodstream when compared to HMB-Ca, though recent results are mixed. 2. The available safety/toxicity data suggest that chronic HMB-Ca and HMB-FA consumption are safe for oral HMB supplementation in humans up to at least one year. 3. There are no negative effects of HMB-Ca and HMB-FA on glucose tolerance and insulin sensitivity in humans. There may be improvements in glucose metabolism in younger adults. 4. The primary mode of action of HMB appears to be through its dual mechanism to enhance muscle protein synthesis and suppress muscle protein breakdown. HMB's activation of mTORC1 is independent of the leucine-sensing pathway (Sestrin2-GATOR2 complex). 5. HMB may help reduce muscle damage and promote muscle recovery, which can promote muscle growth/repair. HMB may also have anti-inflammatory effects, which could contribute to reducing muscle damage and soreness. 6. HMB consumption in close proximity to an exercise bout may be beneficial to increase muscle protein synthesis and attenuate the inflammatory response. HMB can provide a beneficial physiological effect when consumed both acutely and chronically in humans. 7. Daily HMB supplementation (38 mg/kg body weight) in combination with exercise training may improve body composition through increasing lean mass and/or decreasing fat mass with benefits in participants across age, sex, and training status. The most pronounced of these improvements in body composition with HMB have been observed in studies with robust resistance training programs and dietary control. 8. HMB may improve strength and power in untrained individuals, but its performance benefits in trained athletes are mixed and increase with an increase in study duration (>6 weeks). HMB's beneficial effects on athletic performance are thought to be driven by improved recovery. 9. HMB supplementation appears to potentially have a positive impact on aerobic performance, especially in trained athletes. The mechanisms of the effects are unknown. 10. HMB supplementation may be important in a non-exercising sedentary and aging population to improve muscle strength, functionality, and muscle quality. The effects of HMB supplementation with exercise are varied, but the combination may have a beneficial effect on the treatment of age-associated sarcopenia under select conditions. 11. HMB may be effective in countering muscle disuse atrophy during periods of inactivity due to illness or injury. The modulation of mitochondrial dynamics and lipid metabolism by HMB may be a potential mechanism for preventing disuse atrophy and aiding rehabilitation beyond HMB's effects on rates of muscle protein synthesis and degradation. 12. The efficacy of HMB in combination with certain nutrients may be enhanced under select conditions.</p>","PeriodicalId":17400,"journal":{"name":"Journal of the International Society of Sports Nutrition","volume":"22 1","pages":"2434734"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Society of Sports Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15502783.2024.2434734","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on an analysis of the literature regarding the effects of β-Hydroxy-β-Methylbutyrate (HMB). The following 12 points have been approved by the Research Committee of the Society: 1. HMB is a metabolite of the amino acid leucine that is naturally produced in both humans and other animals. Two forms of HMB have been studied: Calcium HMB (HMB-Ca) and a free acid form of HMB (HMB-FA). HMB-FA appears to lead to increased appearance of HMB in the bloodstream when compared to HMB-Ca, though recent results are mixed. 2. The available safety/toxicity data suggest that chronic HMB-Ca and HMB-FA consumption are safe for oral HMB supplementation in humans up to at least one year. 3. There are no negative effects of HMB-Ca and HMB-FA on glucose tolerance and insulin sensitivity in humans. There may be improvements in glucose metabolism in younger adults. 4. The primary mode of action of HMB appears to be through its dual mechanism to enhance muscle protein synthesis and suppress muscle protein breakdown. HMB's activation of mTORC1 is independent of the leucine-sensing pathway (Sestrin2-GATOR2 complex). 5. HMB may help reduce muscle damage and promote muscle recovery, which can promote muscle growth/repair. HMB may also have anti-inflammatory effects, which could contribute to reducing muscle damage and soreness. 6. HMB consumption in close proximity to an exercise bout may be beneficial to increase muscle protein synthesis and attenuate the inflammatory response. HMB can provide a beneficial physiological effect when consumed both acutely and chronically in humans. 7. Daily HMB supplementation (38 mg/kg body weight) in combination with exercise training may improve body composition through increasing lean mass and/or decreasing fat mass with benefits in participants across age, sex, and training status. The most pronounced of these improvements in body composition with HMB have been observed in studies with robust resistance training programs and dietary control. 8. HMB may improve strength and power in untrained individuals, but its performance benefits in trained athletes are mixed and increase with an increase in study duration (>6 weeks). HMB's beneficial effects on athletic performance are thought to be driven by improved recovery. 9. HMB supplementation appears to potentially have a positive impact on aerobic performance, especially in trained athletes. The mechanisms of the effects are unknown. 10. HMB supplementation may be important in a non-exercising sedentary and aging population to improve muscle strength, functionality, and muscle quality. The effects of HMB supplementation with exercise are varied, but the combination may have a beneficial effect on the treatment of age-associated sarcopenia under select conditions. 11. HMB may be effective in countering muscle disuse atrophy during periods of inactivity due to illness or injury. The modulation of mitochondrial dynamics and lipid metabolism by HMB may be a potential mechanism for preventing disuse atrophy and aiding rehabilitation beyond HMB's effects on rates of muscle protein synthesis and degradation. 12. The efficacy of HMB in combination with certain nutrients may be enhanced under select conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the International Society of Sports Nutrition
Journal of the International Society of Sports Nutrition NUTRITION & DIETETICS-SPORT SCIENCES
CiteScore
8.80
自引率
3.90%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Journal of the International Society of Sports Nutrition (JISSN) focuses on the acute and chronic effects of sports nutrition and supplementation strategies on body composition, physical performance and metabolism. JISSN is aimed at researchers and sport enthusiasts focused on delivering knowledge on exercise and nutrition on health, disease, rehabilitation, training, and performance. The journal provides a platform on which readers can determine nutritional strategies that may enhance exercise and/or training adaptations leading to improved health and performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信