Effects of Bifidobacterium and rosuvastatin on metabolic-associated fatty liver disease via the gut-liver axis.

IF 3.9 2区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xue Ran, Ying-Jie Wang, Shi-Gang Li, Chi-Bing Dai
{"title":"Effects of Bifidobacterium and rosuvastatin on metabolic-associated fatty liver disease via the gut-liver axis.","authors":"Xue Ran, Ying-Jie Wang, Shi-Gang Li, Chi-Bing Dai","doi":"10.1186/s12944-024-02391-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Research has indicated that treatment with rosuvastatin can improve liver pathology in metabolic-associated fatty liver disease (MAFLD) patients and that treatment with Bifidobacterium can improve MAFLD. Therefore, the effects of Bifidobacterium, rosuvastatin, and their combination on related indices in a rat model of diet-induced MAFLD need to be investigated.</p><p><strong>Methods: </strong>Forty rats were divided into five groups: the normal diet group (N), high-fat diet (HFD) model group (M), HFD + probiotic group (P), HFD + statin group (S), and HFD + probiotic + statin group (P-S). To establish the MAFLD model, the rats in Groups M, P, S, and P-S were fed a HFD for 8 weeks. The treatments included saline in Group N and either Bifidobacterium, rosuvastatin, or their combination in Groups P, S, and P-S by intragastrical gavage. After 4 weeks of intervention, the rats were euthanized, and samples were harvested to analyze gastrointestinal motility and liver function, pathological changes, inflammatory cytokine production, and the expression of proteins in key signaling pathways.</p><p><strong>Results: </strong>HFD feeding significantly increased the body weight, liver index, and insulin resistance (IR) index of the rats, indicating that the MAFLD model was successfully induced. Bifidobacterium reduced the liver of MAFLD rats, while Bifidobacterium with Rosuvastatin decreased the liver index, IR index, and levels of aspartate aminotransferase and alanine aminotransferase in MAFLD rats. The MAFLD model showed altered expression of proteins in signaling pathways that regulate inflammation, increased production of inflammatory cytokines, an elevated MAFLD activity score (MAS), and pathological changes in the liver. The MAFLD model also showed reduced relative counts of intestinal neurons and enteric glial cells (EGCs), altered secretion of gastrointestinal hormones, and slowed gastrointestinal emptying. Bifidobacterium, rosuvastatin, or their combination inhibited these various changes. HFD feeding changed the rats' gut microbiota, and the tested treatments inhibited these changes. These results suggest that the gastrointestinal motility disorder and abnormal liver function in MAFLD rats may be related to a reduction in Escherichia-Shigella bacteria and an increase in Asticcacaulis bacteria in the gut microbiota and that the improvement in liver function induced by Bifidobacterium plus rosuvastatin may be related to increases in Sphingomonas and Odoribacter bacteria and a decrease in Turicibacter bacteria in the gut microbiota.</p><p><strong>Conclusions: </strong>The combined use of Bifidobacterium and rosuvastatin could better regulate the gut microbiota of MAFLD model rats, promote gastrointestinal emptying, and improve liver pathology and function than single treatment with Bifidobacterium or rosuvastatin. This provides a better strategy for the treatment of MAFLD.</p>","PeriodicalId":18073,"journal":{"name":"Lipids in Health and Disease","volume":"23 1","pages":"401"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654016/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lipids in Health and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12944-024-02391-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/aims: Research has indicated that treatment with rosuvastatin can improve liver pathology in metabolic-associated fatty liver disease (MAFLD) patients and that treatment with Bifidobacterium can improve MAFLD. Therefore, the effects of Bifidobacterium, rosuvastatin, and their combination on related indices in a rat model of diet-induced MAFLD need to be investigated.

Methods: Forty rats were divided into five groups: the normal diet group (N), high-fat diet (HFD) model group (M), HFD + probiotic group (P), HFD + statin group (S), and HFD + probiotic + statin group (P-S). To establish the MAFLD model, the rats in Groups M, P, S, and P-S were fed a HFD for 8 weeks. The treatments included saline in Group N and either Bifidobacterium, rosuvastatin, or their combination in Groups P, S, and P-S by intragastrical gavage. After 4 weeks of intervention, the rats were euthanized, and samples were harvested to analyze gastrointestinal motility and liver function, pathological changes, inflammatory cytokine production, and the expression of proteins in key signaling pathways.

Results: HFD feeding significantly increased the body weight, liver index, and insulin resistance (IR) index of the rats, indicating that the MAFLD model was successfully induced. Bifidobacterium reduced the liver of MAFLD rats, while Bifidobacterium with Rosuvastatin decreased the liver index, IR index, and levels of aspartate aminotransferase and alanine aminotransferase in MAFLD rats. The MAFLD model showed altered expression of proteins in signaling pathways that regulate inflammation, increased production of inflammatory cytokines, an elevated MAFLD activity score (MAS), and pathological changes in the liver. The MAFLD model also showed reduced relative counts of intestinal neurons and enteric glial cells (EGCs), altered secretion of gastrointestinal hormones, and slowed gastrointestinal emptying. Bifidobacterium, rosuvastatin, or their combination inhibited these various changes. HFD feeding changed the rats' gut microbiota, and the tested treatments inhibited these changes. These results suggest that the gastrointestinal motility disorder and abnormal liver function in MAFLD rats may be related to a reduction in Escherichia-Shigella bacteria and an increase in Asticcacaulis bacteria in the gut microbiota and that the improvement in liver function induced by Bifidobacterium plus rosuvastatin may be related to increases in Sphingomonas and Odoribacter bacteria and a decrease in Turicibacter bacteria in the gut microbiota.

Conclusions: The combined use of Bifidobacterium and rosuvastatin could better regulate the gut microbiota of MAFLD model rats, promote gastrointestinal emptying, and improve liver pathology and function than single treatment with Bifidobacterium or rosuvastatin. This provides a better strategy for the treatment of MAFLD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Lipids in Health and Disease
Lipids in Health and Disease 生物-生化与分子生物学
CiteScore
7.70
自引率
2.20%
发文量
122
审稿时长
3-8 weeks
期刊介绍: Lipids in Health and Disease is an open access, peer-reviewed, journal that publishes articles on all aspects of lipids: their biochemistry, pharmacology, toxicology, role in health and disease, and the synthesis of new lipid compounds. Lipids in Health and Disease is aimed at all scientists, health professionals and physicians interested in the area of lipids. Lipids are defined here in their broadest sense, to include: cholesterol, essential fatty acids, saturated fatty acids, phospholipids, inositol lipids, second messenger lipids, enzymes and synthetic machinery that is involved in the metabolism of various lipids in the cells and tissues, and also various aspects of lipid transport, etc. In addition, the journal also publishes research that investigates and defines the role of lipids in various physiological processes, pathology and disease. In particular, the journal aims to bridge the gap between the bench and the clinic by publishing articles that are particularly relevant to human diseases and the role of lipids in the management of various diseases.
文献相关原料
公司名称 产品信息 采购帮参考价格
阿拉丁 phenylmethanesulfonyl fluoride (PMSF)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信