Lysosomal/mitochondrial interaction promotes tumor growth in squamous cell carcinoma of the head and neck.

IF 4.1 2区 医学 Q2 CELL BIOLOGY
Avani Gopalkrishnan, Nathaniel Wang, Silvia Cruz-Rangel, Abdul Yassin-Kassab, Sruti Shiva, Chareeni Kurukulasuriya, Satdarshan P Monga, Ralph J DeBerardinis, Heath D Skinner, Kirill Kiselyov, Umamaheswar Duvvuri
{"title":"Lysosomal/mitochondrial interaction promotes tumor growth in squamous cell carcinoma of the head and neck.","authors":"Avani Gopalkrishnan, Nathaniel Wang, Silvia Cruz-Rangel, Abdul Yassin-Kassab, Sruti Shiva, Chareeni Kurukulasuriya, Satdarshan P Monga, Ralph J DeBerardinis, Heath D Skinner, Kirill Kiselyov, Umamaheswar Duvvuri","doi":"10.1158/1541-7786.MCR-24-0337","DOIUrl":null,"url":null,"abstract":"<p><p>Communication between intracellular organelles including lysosomes and mitochondria has recently been shown to regulate cellular proliferation and fitness. The way lysosomes and mitochondria communicate with each other (lysosomal/mitochondrial interaction, LMI) is, emerging as a major determinant of tumor proliferation and growth. About 30% of squamous carcinomas (including squamous cell carcinoma of the head and neck, SCCHN) overexpress TMEM16A, a calcium-activated chloride channel, which promotes cellular growth and negatively correlates with patient survival. We have recently shown that TMEM16A drives lysosomal biogenesis, but its impact on mitochondrial function has not been explored. Here, we show that in the context of high TMEM16A SCCHN, (1) patients display increased mitochondrial content, specifically complex I; (2) In vitro and in vivo models uniquely depend on mitochondrial complex I activity for growth and survival; (3) NRF2 signaling is a critical linchpin that drives mitochondrial function, and (4) mitochondrial complex I and lysosomal function are codependent for proliferation. Taken together, our data demonstrate that coordinated lysosomal and mitochondrial activity and biogenesis via LMI drive tumor proliferation and facilitates a functional interaction between lysosomal and mitochondrial networks. Therefore, inhibition of LMI instauration may serve as a therapeutic strategy for patients with SCCHN. Implications: Intervention of lysosome-mitochondria interaction may serve as a therapeutic approach for patients with high TMEM16A expressing SCCHN.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-24-0337","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Communication between intracellular organelles including lysosomes and mitochondria has recently been shown to regulate cellular proliferation and fitness. The way lysosomes and mitochondria communicate with each other (lysosomal/mitochondrial interaction, LMI) is, emerging as a major determinant of tumor proliferation and growth. About 30% of squamous carcinomas (including squamous cell carcinoma of the head and neck, SCCHN) overexpress TMEM16A, a calcium-activated chloride channel, which promotes cellular growth and negatively correlates with patient survival. We have recently shown that TMEM16A drives lysosomal biogenesis, but its impact on mitochondrial function has not been explored. Here, we show that in the context of high TMEM16A SCCHN, (1) patients display increased mitochondrial content, specifically complex I; (2) In vitro and in vivo models uniquely depend on mitochondrial complex I activity for growth and survival; (3) NRF2 signaling is a critical linchpin that drives mitochondrial function, and (4) mitochondrial complex I and lysosomal function are codependent for proliferation. Taken together, our data demonstrate that coordinated lysosomal and mitochondrial activity and biogenesis via LMI drive tumor proliferation and facilitates a functional interaction between lysosomal and mitochondrial networks. Therefore, inhibition of LMI instauration may serve as a therapeutic strategy for patients with SCCHN. Implications: Intervention of lysosome-mitochondria interaction may serve as a therapeutic approach for patients with high TMEM16A expressing SCCHN.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Cancer Research
Molecular Cancer Research 医学-细胞生物学
CiteScore
9.90
自引率
0.00%
发文量
280
审稿时长
4-8 weeks
期刊介绍: Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信