Astragali radix vesicle-like nanoparticles improve energy metabolism disorders by repairing the intestinal mucosal barrier and regulating amino acid metabolism in sleep-deprived mice.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yue Yuan, Wenjing Gao, Yunxiao Gao, Qiuyan Zhang, Yali Shi, Na Zhang, Guochao Song, Longxiao Hu, Yunyao Jiang, Jianxun Liu, Junguo Ren
{"title":"Astragali radix vesicle-like nanoparticles improve energy metabolism disorders by repairing the intestinal mucosal barrier and regulating amino acid metabolism in sleep-deprived mice.","authors":"Yue Yuan, Wenjing Gao, Yunxiao Gao, Qiuyan Zhang, Yali Shi, Na Zhang, Guochao Song, Longxiao Hu, Yunyao Jiang, Jianxun Liu, Junguo Ren","doi":"10.1186/s12951-024-03034-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sleep disorder is widespread and involves a variety of intricate factors in its development. Sleep deprivation is a manifestation of sleep disorder, can lead to energy metabolism disturbances, weakened immune system, and compromised body functions. In extreme situations, sleep deprivation can cause organ failure, presenting significant risks to human health.</p><p><strong>Purpose: </strong>This study aimed to investigate the efficacy and mechanisms of Astragalus Radix vesicles-like nanoparticles (AR-VLNs) in counteracting the deleterious effects of sleep deprivation.</p><p><strong>Methods: </strong>The ICR mice were divided into control, model, AR-VLNs high dose (equivalent to 20 g/kg crude drug), AR-VLNs low dose (equivalent to 10 g/kg crude drug), AR high dose (equivalent to 20 g/kg crude drug), and AR low dose (equivalent to 10 g/kg crude drug). The REM (rapid eye movement) sleep-deprivation model was established, and evaluations were conducted for motor function, antioxidant capacity, and energy metabolism indices. Moreover, CACO-2 cells damage was induced with lipopolysaccharide to evaluate the repairing ability of AR-VLNs on the intestinal cell mucosa by measuring permeability. Furthermore, metabolomics was employed to elucidate the mechanisms of AR-VLNs action.</p><p><strong>Results: </strong>AR-VLNs were demonstrated to enhance the motor efficiency and antioxidant capacity in REM sleep-deprived mice, while also minimized pathological damage and restored the integrity of the intestinal mucosal barrier. In vitro experiments indicated the anti-inflammatory effect of AR-VLNs against LPS-induced cell damage. Additionally, metabolomic analysis linked these effects with regulation of the amino acid metabolic pathways. Further confirmation from molecular biology experiments revealed that the protective effects of AR-VLNs against the deleterious effects of REM sleep deprivation were associated with the restoration of the intestinal mucosal barrier and the enhancement of amino acid metabolism.</p><p><strong>Conclusion: </strong>AR-VLNs administration effectively improved energy metabolism disorders in REM sleep deprived mice, by facilitating the repair of the intestinal mucosal barrier and regulating the amino acid metabolism.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"768"},"PeriodicalIF":10.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658387/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-03034-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Sleep disorder is widespread and involves a variety of intricate factors in its development. Sleep deprivation is a manifestation of sleep disorder, can lead to energy metabolism disturbances, weakened immune system, and compromised body functions. In extreme situations, sleep deprivation can cause organ failure, presenting significant risks to human health.

Purpose: This study aimed to investigate the efficacy and mechanisms of Astragalus Radix vesicles-like nanoparticles (AR-VLNs) in counteracting the deleterious effects of sleep deprivation.

Methods: The ICR mice were divided into control, model, AR-VLNs high dose (equivalent to 20 g/kg crude drug), AR-VLNs low dose (equivalent to 10 g/kg crude drug), AR high dose (equivalent to 20 g/kg crude drug), and AR low dose (equivalent to 10 g/kg crude drug). The REM (rapid eye movement) sleep-deprivation model was established, and evaluations were conducted for motor function, antioxidant capacity, and energy metabolism indices. Moreover, CACO-2 cells damage was induced with lipopolysaccharide to evaluate the repairing ability of AR-VLNs on the intestinal cell mucosa by measuring permeability. Furthermore, metabolomics was employed to elucidate the mechanisms of AR-VLNs action.

Results: AR-VLNs were demonstrated to enhance the motor efficiency and antioxidant capacity in REM sleep-deprived mice, while also minimized pathological damage and restored the integrity of the intestinal mucosal barrier. In vitro experiments indicated the anti-inflammatory effect of AR-VLNs against LPS-induced cell damage. Additionally, metabolomic analysis linked these effects with regulation of the amino acid metabolic pathways. Further confirmation from molecular biology experiments revealed that the protective effects of AR-VLNs against the deleterious effects of REM sleep deprivation were associated with the restoration of the intestinal mucosal barrier and the enhancement of amino acid metabolism.

Conclusion: AR-VLNs administration effectively improved energy metabolism disorders in REM sleep deprived mice, by facilitating the repair of the intestinal mucosal barrier and regulating the amino acid metabolism.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信