{"title":"Flexible solid-state supercapacitors based on biowaste-derived activated carbon and nanomaterials for enhanced performance.","authors":"Dilara Koroglu, Haluk Bingol, Betul Uralcan","doi":"10.1088/1361-6528/ada0c0","DOIUrl":null,"url":null,"abstract":"<p><p>Supercapacitors are energy storage devices with long cycle life that can harvest and deliver high power. This makes them attractive for a broad range of applications including flexible and lightweight wearable consumer electronics. In this work, we fabricate flexible solid-state supercapacitors with improved capacitance and cycle life. We synthesize activated carbon (AC) from cabbage leaves as a low cost, biowaste-derived active electrode material. To improve mechanical flexibility and conductivity, we incorporate reduced graphene oxide sheets (RGO) and carbon quantum dots (CQDs) into the electrodes. We show that at the optimum AC/RGO/CQD composition, the capacitance of the solid-state supercapacitor is maximized while its scan rate dependence and bending stability are simultaneously improved. We envision that this approach offers significant potential for delivering efficient energy storage devices for consumer electronics.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada0c0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Supercapacitors are energy storage devices with long cycle life that can harvest and deliver high power. This makes them attractive for a broad range of applications including flexible and lightweight wearable consumer electronics. In this work, we fabricate flexible solid-state supercapacitors with improved capacitance and cycle life. We synthesize activated carbon (AC) from cabbage leaves as a low cost, biowaste-derived active electrode material. To improve mechanical flexibility and conductivity, we incorporate reduced graphene oxide sheets (RGO) and carbon quantum dots (CQDs) into the electrodes. We show that at the optimum AC/RGO/CQD composition, the capacitance of the solid-state supercapacitor is maximized while its scan rate dependence and bending stability are simultaneously improved. We envision that this approach offers significant potential for delivering efficient energy storage devices for consumer electronics.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.