Understanding Bacterial Resistance to Heavy Metals and Nanoparticles: Mechanisms, Implications, and Challenges.

IF 3.5 4区 生物学 Q2 MICROBIOLOGY
Chaitra Prabhu, Akshath Uchangi Satyaprasad, Vijaya Kumar Deekshit
{"title":"Understanding Bacterial Resistance to Heavy Metals and Nanoparticles: Mechanisms, Implications, and Challenges.","authors":"Chaitra Prabhu, Akshath Uchangi Satyaprasad, Vijaya Kumar Deekshit","doi":"10.1002/jobm.202400596","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance is a global health problem as it contributes to high mortality rates in several infectious diseases. To address this issue, engineered nanoparticles/nano-formulations of antibiotics have emerged as a promising strategy. Nanoparticles are typically defined as materials with dimensions up to 100 nm and are made of different materials such as inorganic particles, lipids, polymers, etc. They are widely dispersed in the environment through various consumer products, and their clinical applications are diverse, ranging from contrast agents in imaging to carriers for gene and drug delivery. Nanoparticles can also act as antimicrobial agents either on their own or in combination with traditional antibiotics to produce synergistic effects, earning them the label of \"next-generation therapeutics.\" They have also shown great effectiveness against multidrug-resistant pathogens responsible for nosocomial infections. However, overexposure or prolonged exposure to sublethal doses of nanoparticles can promote the development of resistance in human pathogens. The resistance can arise from various factors such as genetic mutation, horizontal gene transfer, production of reactive oxygen species, changes in the outer membrane of bacteria, efflux-induced resistance, cross-resistance from intrinsic antibiotic resistance determinants, plasmid-mediated resistance, and many more. Continuous exposure to nanoparticles can also transform an antibiotic-susceptible bacterial pathogen into multidrug resistance. Considering all these, the current review focuses on the mode of action of different heavy metals and nanoparticles and possible mechanisms through which bacteria attain resistance towards these heavy metals and nanoparticles.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400596"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.202400596","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial resistance is a global health problem as it contributes to high mortality rates in several infectious diseases. To address this issue, engineered nanoparticles/nano-formulations of antibiotics have emerged as a promising strategy. Nanoparticles are typically defined as materials with dimensions up to 100 nm and are made of different materials such as inorganic particles, lipids, polymers, etc. They are widely dispersed in the environment through various consumer products, and their clinical applications are diverse, ranging from contrast agents in imaging to carriers for gene and drug delivery. Nanoparticles can also act as antimicrobial agents either on their own or in combination with traditional antibiotics to produce synergistic effects, earning them the label of "next-generation therapeutics." They have also shown great effectiveness against multidrug-resistant pathogens responsible for nosocomial infections. However, overexposure or prolonged exposure to sublethal doses of nanoparticles can promote the development of resistance in human pathogens. The resistance can arise from various factors such as genetic mutation, horizontal gene transfer, production of reactive oxygen species, changes in the outer membrane of bacteria, efflux-induced resistance, cross-resistance from intrinsic antibiotic resistance determinants, plasmid-mediated resistance, and many more. Continuous exposure to nanoparticles can also transform an antibiotic-susceptible bacterial pathogen into multidrug resistance. Considering all these, the current review focuses on the mode of action of different heavy metals and nanoparticles and possible mechanisms through which bacteria attain resistance towards these heavy metals and nanoparticles.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Basic Microbiology
Journal of Basic Microbiology 生物-微生物学
CiteScore
6.10
自引率
0.00%
发文量
134
审稿时长
1.8 months
期刊介绍: The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions. Papers published deal with: microbial interactions (pathogenic, mutualistic, environmental), ecology, physiology, genetics and cell biology/development, new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications) novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信