CircMIB1 inhibits glioma development and progression through a competing endogenous RNA interaction network.

IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Frontiers in Molecular Biosciences Pub Date : 2024-12-04 eCollection Date: 2024-01-01 DOI:10.3389/fmolb.2024.1513919
Simin Chen, Longping Li, Wei Xu, Nanjiao Xie, Huiting Xu, Yongjun Zhou, Ying Zou, Kai Yi, Yi Liu
{"title":"CircMIB1 inhibits glioma development and progression through a competing endogenous RNA interaction network.","authors":"Simin Chen, Longping Li, Wei Xu, Nanjiao Xie, Huiting Xu, Yongjun Zhou, Ying Zou, Kai Yi, Yi Liu","doi":"10.3389/fmolb.2024.1513919","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The critical role of circular RNAs as non-coding RNAs in glioma has been extensively investigated. Therefore, we aimed to explore the role and potential molecular mechanisms of circRNA-mind bomb homolog 1 (circMIB1) in gliomas.</p><p><strong>Methods: </strong>RNA sequencing was used to analyze the expression profiles of circRNAs in glioma tissues and normal brain tissues. Quantitative real-time polymerase chain reaction was implemented to examine the levels of circMIB1 in glioma cells and tissues. The circMIB1 was identified as a cyclic RNA molecule by DNA nucleic acid electrophoresis and ribonuclease R assay. The relationship between circMIB1 expression and the prognosis of glioma patients and its potential as a biomarker were analysed using Kaplan-Meier, Receiver operating characteristic curves, and Principal component analysis. Bioinformatics analysis predicted the miRNAs that bind to circMIB1 and their downstream targets, and analysed the functions of these genes.</p><p><strong>Results: </strong>Firstly, a novel circRNA molecule termed circMIB1 was identified and validated by RNA sequencing. The expression of circMIB1 was significantly downregulated in glioma cells and tissues, and was closely associated with the tumor grade and survival prognosis of patients with glioma. Hence, it may be useful as a biomarker for glioma. Secondly, it was predicted that circMIB1 binds to hsa-miR-1290 based on bioinformatics analysis, which was significantly upregulated in glioma cells and tissues, and correlated with the tumor grade and overall survival of patients. Thirdly, through a series of bioinformatics analyses identified six genes downstream of hsa-miR-1290 that were significantly associated with glioma expression and prognosis, these genes are associated with cell cycle, cell necrosis and cell circadian rhythms.</p><p><strong>Discussion: </strong>CircMIB1 may play a role in inhibiting glioma development through the hsa-miR-1290 competitive endogenous RNA interaction network, these findings provide new ideas and directions for the diagnosis and treatment of glioma.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"11 ","pages":"1513919"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652353/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2024.1513919","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The critical role of circular RNAs as non-coding RNAs in glioma has been extensively investigated. Therefore, we aimed to explore the role and potential molecular mechanisms of circRNA-mind bomb homolog 1 (circMIB1) in gliomas.

Methods: RNA sequencing was used to analyze the expression profiles of circRNAs in glioma tissues and normal brain tissues. Quantitative real-time polymerase chain reaction was implemented to examine the levels of circMIB1 in glioma cells and tissues. The circMIB1 was identified as a cyclic RNA molecule by DNA nucleic acid electrophoresis and ribonuclease R assay. The relationship between circMIB1 expression and the prognosis of glioma patients and its potential as a biomarker were analysed using Kaplan-Meier, Receiver operating characteristic curves, and Principal component analysis. Bioinformatics analysis predicted the miRNAs that bind to circMIB1 and their downstream targets, and analysed the functions of these genes.

Results: Firstly, a novel circRNA molecule termed circMIB1 was identified and validated by RNA sequencing. The expression of circMIB1 was significantly downregulated in glioma cells and tissues, and was closely associated with the tumor grade and survival prognosis of patients with glioma. Hence, it may be useful as a biomarker for glioma. Secondly, it was predicted that circMIB1 binds to hsa-miR-1290 based on bioinformatics analysis, which was significantly upregulated in glioma cells and tissues, and correlated with the tumor grade and overall survival of patients. Thirdly, through a series of bioinformatics analyses identified six genes downstream of hsa-miR-1290 that were significantly associated with glioma expression and prognosis, these genes are associated with cell cycle, cell necrosis and cell circadian rhythms.

Discussion: CircMIB1 may play a role in inhibiting glioma development through the hsa-miR-1290 competitive endogenous RNA interaction network, these findings provide new ideas and directions for the diagnosis and treatment of glioma.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Molecular Biosciences
Frontiers in Molecular Biosciences Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.20
自引率
4.00%
发文量
1361
审稿时长
14 weeks
期刊介绍: Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology. Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life. In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信