Convergent evolution has led to the loss of claw proteins in snakes and worm lizards.

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY
Karin Brigit Holthaus, Julia Steinbinder, Attila Placido Sachslehner, Leopold Eckhart
{"title":"Convergent evolution has led to the loss of claw proteins in snakes and worm lizards.","authors":"Karin Brigit Holthaus, Julia Steinbinder, Attila Placido Sachslehner, Leopold Eckhart","doi":"10.1093/gbe/evae274","DOIUrl":null,"url":null,"abstract":"<p><p>The evolution of cornified skin appendages, such as hair, feathers and claws, is closely linked to the evolution of proteins that establish the unique mechanical stability of these epithelial structures. We hypothesized that the evolution of the limbless body anatomy of the Florida worm lizard (Rhineura floridana) and the concomitant loss of claws had led to the degeneration of genes with claw-associated functions. To test this hypothesis, we investigated the evolution of three gene families implicated in epithelial cell architecture, namely type I keratins, type II keratins and genes of the epidermal differentiation complex (EDC) in R. floridana in comparison to other squamates. We report that the orthologs of mammalian hair and nail keratins have undergone pseudogenization in R. floridana. Likewise, the EDC genes tentatively named EDYM1 and EDCCs have been lost in R. floridana. The aforementioned genes are conserved in various lizards with claws, but not in snakes. Proteomic analysis of the cornified claws of the bearded dragon (Pogona vitticeps) confirmed that type I and type II hair keratin homologs, EDYM1 and EDCCs are protein components of claws in squamates. We conclude that the convergent evolution of a limbless body was associated with the convergent loss of claw keratins and differentiation genes in squamates.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae274","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of cornified skin appendages, such as hair, feathers and claws, is closely linked to the evolution of proteins that establish the unique mechanical stability of these epithelial structures. We hypothesized that the evolution of the limbless body anatomy of the Florida worm lizard (Rhineura floridana) and the concomitant loss of claws had led to the degeneration of genes with claw-associated functions. To test this hypothesis, we investigated the evolution of three gene families implicated in epithelial cell architecture, namely type I keratins, type II keratins and genes of the epidermal differentiation complex (EDC) in R. floridana in comparison to other squamates. We report that the orthologs of mammalian hair and nail keratins have undergone pseudogenization in R. floridana. Likewise, the EDC genes tentatively named EDYM1 and EDCCs have been lost in R. floridana. The aforementioned genes are conserved in various lizards with claws, but not in snakes. Proteomic analysis of the cornified claws of the bearded dragon (Pogona vitticeps) confirmed that type I and type II hair keratin homologs, EDYM1 and EDCCs are protein components of claws in squamates. We conclude that the convergent evolution of a limbless body was associated with the convergent loss of claw keratins and differentiation genes in squamates.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信