Ziyu Wang, Mohammad Majidi, Chenji Li, Arezoo Ardekani
{"title":"Numerical study of the effects of minor structures and mean velocity fields in the cerebrospinal fluid flow.","authors":"Ziyu Wang, Mohammad Majidi, Chenji Li, Arezoo Ardekani","doi":"10.1186/s12987-024-00604-x","DOIUrl":null,"url":null,"abstract":"<p><p>The importance of optimizing intrathecal drug delivery is highlighted by its potential to improve patient health outcomes. Findings from previous computational studies, based on an individual or a small group, may not be applicable to the wider population due to substantial geometric variability. Our study aims to circumvent this problem by evaluating an individual's cycle-averaged Lagrangian velocity field based on the geometry of their spinal subarachnoid space. It has been shown by Lawrence et al. (J Fluid Mech 861:679-720, 2019) that dominant physical mechanisms, such as steady streaming and Stokes drift, are key to facilitating mass transport within the spinal canal. In this study, we computationally modeled pulsatile cerebrospinal fluid flow fields and Lagrangian velocity field within the spinal subarachnoid space. Our findings highlight the essential role of minor structures, such as nerve roots, denticulate ligaments, and the wavy arachnoid membrane, in modulating flow and transport dynamics within the spinal subarachnoid space. We found that these structures can enhance fluid transport. We also emphasized the need for particle tracking in computational studies of mass transport within the spinal subarachnoid space. Our research illuminates the relationship between the geometry of the spinal canal and transport dynamics, characterized by a large upward cycle-averaged Lagrangian velocity zone in the wider region of the geometry, as opposed to a downward zone in the narrower region and areas close to the wall. This highlights the potential for optimizing intrathecal injection protocols by harnessing natural flow dynamics within the spinal canal.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"102"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00604-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The importance of optimizing intrathecal drug delivery is highlighted by its potential to improve patient health outcomes. Findings from previous computational studies, based on an individual or a small group, may not be applicable to the wider population due to substantial geometric variability. Our study aims to circumvent this problem by evaluating an individual's cycle-averaged Lagrangian velocity field based on the geometry of their spinal subarachnoid space. It has been shown by Lawrence et al. (J Fluid Mech 861:679-720, 2019) that dominant physical mechanisms, such as steady streaming and Stokes drift, are key to facilitating mass transport within the spinal canal. In this study, we computationally modeled pulsatile cerebrospinal fluid flow fields and Lagrangian velocity field within the spinal subarachnoid space. Our findings highlight the essential role of minor structures, such as nerve roots, denticulate ligaments, and the wavy arachnoid membrane, in modulating flow and transport dynamics within the spinal subarachnoid space. We found that these structures can enhance fluid transport. We also emphasized the need for particle tracking in computational studies of mass transport within the spinal subarachnoid space. Our research illuminates the relationship between the geometry of the spinal canal and transport dynamics, characterized by a large upward cycle-averaged Lagrangian velocity zone in the wider region of the geometry, as opposed to a downward zone in the narrower region and areas close to the wall. This highlights the potential for optimizing intrathecal injection protocols by harnessing natural flow dynamics within the spinal canal.
期刊介绍:
"Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease.
At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).