{"title":"Artificial intelligence in surgical pathology - Where do we stand, where do we go?","authors":"Chen Sagiv, Ofir Hadar, Abderrahman Najjar, Jens Pahnke","doi":"10.1016/j.ejso.2024.109541","DOIUrl":null,"url":null,"abstract":"<p><p>Surgical and neuropathologists continuously search for new and disease-specific features, such as independent predictors of tumor prognosis or determinants of tumor entities and sub-entities. This is a task where artificial intelligence (AI)/machine learning (ML) systems could significantly contribute to help with tumor outcome prediction and the search for new diagnostic or treatment stratification biomarkers. AI systems are increasingly integrated into routine pathology workflows to improve accuracy, reproducibility, productivity and to reveal difficult-to-see features in complicated histological slides, including the quantification of important markers for tumor grading and staging. In this article, we review the infrastructure needed to facilitate digital and computational pathology. We address the barriers for its full deployment in the clinical setting and describe the use of AI in intraoperative or postoperative settings were frozen or formalin-fixed, paraffin-embedded materials are used. We also summarize quality assessment issues of slide digitization, new spatial biology approaches, and the determination of specific gene-expression from whole slide images. Finally, we highlight new innovative and future technologies, such as large language models, optical biopsies, and mass spectrometry imaging.</p>","PeriodicalId":11522,"journal":{"name":"Ejso","volume":" ","pages":"109541"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ejso","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejso.2024.109541","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Surgical and neuropathologists continuously search for new and disease-specific features, such as independent predictors of tumor prognosis or determinants of tumor entities and sub-entities. This is a task where artificial intelligence (AI)/machine learning (ML) systems could significantly contribute to help with tumor outcome prediction and the search for new diagnostic or treatment stratification biomarkers. AI systems are increasingly integrated into routine pathology workflows to improve accuracy, reproducibility, productivity and to reveal difficult-to-see features in complicated histological slides, including the quantification of important markers for tumor grading and staging. In this article, we review the infrastructure needed to facilitate digital and computational pathology. We address the barriers for its full deployment in the clinical setting and describe the use of AI in intraoperative or postoperative settings were frozen or formalin-fixed, paraffin-embedded materials are used. We also summarize quality assessment issues of slide digitization, new spatial biology approaches, and the determination of specific gene-expression from whole slide images. Finally, we highlight new innovative and future technologies, such as large language models, optical biopsies, and mass spectrometry imaging.
期刊介绍:
JSO - European Journal of Surgical Oncology ("the Journal of Cancer Surgery") is the Official Journal of the European Society of Surgical Oncology and BASO ~ the Association for Cancer Surgery.
The EJSO aims to advance surgical oncology research and practice through the publication of original research articles, review articles, editorials, debates and correspondence.