Life and Death without Telomerase: The Saccharomyces cerevisiae Model.

IF 6.9 2区 生物学 Q1 CELL BIOLOGY
Veronica Martinez-Fernandez, Aurélia Barascu, Maria Teresa Teixeira
{"title":"Life and Death without Telomerase: The <i>Saccharomyces cerevisiae</i> Model.","authors":"Veronica Martinez-Fernandez, Aurélia Barascu, Maria Teresa Teixeira","doi":"10.1101/cshperspect.a041699","DOIUrl":null,"url":null,"abstract":"<p><p><i>Saccharomyces cerevisiae</i>, a model organism in telomere biology, has been instrumental in pioneering a comprehensive understanding of the molecular processes that occur in the absence of telomerase across eukaryotes. This exploration spans investigations into telomere dynamics, intracellular signaling cascades, and organelle-mediated responses, elucidating their impact on proliferative capacity, genome stability, and cellular variability. Through the lens of budding yeast, numerous sources of cellular heterogeneity have been identified, dissected, and modeled, shedding light on the risks associated with telomeric state transitions, including the evasion of senescence. Moreover, the unraveling of the intricate interplay between the nucleus and other organelles upon telomerase inactivation has provided insights into eukaryotic evolution and cellular communication networks. These contributions, akin to milestones achieved using budding yeast, such as the discovery of the cell cycle, DNA damage checkpoint mechanisms, and DNA replication and repair processes, have been of paramount significance for the telomere field. Particularly, these insights extend to understanding replicative senescence as an anticancer mechanism in humans and enhancing our understanding of eukaryotes' evolution.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041699","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Saccharomyces cerevisiae, a model organism in telomere biology, has been instrumental in pioneering a comprehensive understanding of the molecular processes that occur in the absence of telomerase across eukaryotes. This exploration spans investigations into telomere dynamics, intracellular signaling cascades, and organelle-mediated responses, elucidating their impact on proliferative capacity, genome stability, and cellular variability. Through the lens of budding yeast, numerous sources of cellular heterogeneity have been identified, dissected, and modeled, shedding light on the risks associated with telomeric state transitions, including the evasion of senescence. Moreover, the unraveling of the intricate interplay between the nucleus and other organelles upon telomerase inactivation has provided insights into eukaryotic evolution and cellular communication networks. These contributions, akin to milestones achieved using budding yeast, such as the discovery of the cell cycle, DNA damage checkpoint mechanisms, and DNA replication and repair processes, have been of paramount significance for the telomere field. Particularly, these insights extend to understanding replicative senescence as an anticancer mechanism in humans and enhancing our understanding of eukaryotes' evolution.

没有端粒酶的生与死:酿酒酵母模型。
酿酒酵母菌是端粒生物学中的一种模式生物,在全面了解真核生物端粒酶缺失时的分子过程方面发挥了重要作用。这一探索跨越了对端粒动力学、细胞内信号级联和细胞器介导反应的研究,阐明了它们对增殖能力、基因组稳定性和细胞变异性的影响。通过芽殖酵母的镜头,许多细胞异质性的来源已经被确定、解剖和建模,揭示了与端粒状态转变相关的风险,包括逃避衰老。此外,端粒酶失活过程中细胞核和其他细胞器之间错综复杂的相互作用的揭示,为真核生物进化和细胞通信网络提供了新的见解。这些贡献,类似于利用出芽酵母实现的里程碑,如发现细胞周期,DNA损伤检查点机制,DNA复制和修复过程,对端粒领域具有至关重要的意义。特别是,这些见解延伸到理解作为人类抗癌机制的复制性衰老和增强我们对真核生物进化的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.00
自引率
1.40%
发文量
56
审稿时长
3-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信